Statics-III
 Sem-III (Syll-Dec/2020)

Time: 3hrs
M.M.- 40

Note: The candidates are required to attempt two questions each from A \& B Section C will be compulsory

Section A (6 marks each)

1. The resultant R of forces P and Q makes an angle $2 a$ with the line of action of P is now replaced by $P+R, Q$ remaining unchanged. Show that the new resultant makes an angle α with P.
2. Forces equal to 4,8 and 12 kg . wt. acts along the sides of an equilateral triangle taken in order. Find their resultant completely
3. P and Q are magnitudes of two like parallel forces. If first force be moved parallel to itself through a distance x, prove that their resultant moves through a distance $\frac{P x}{P+Q}$.
4. A) State and prove Varigonon's theorem.
b) The parallel forces of magnitude P, Q and R acts at a point A, B and C respectively of a triangle $A B C$. Prove that their centre is orthocenter of the triangle if $\frac{P}{\tan A}=\frac{Q}{\tan B}=\frac{R}{\tan C}$.

Section B(6 marks each)

5. A) Find Centre of Gravity of a uniform Trapezium
b) A squaũie is utescribeú externaliy on a side on an equilateral triangie. Find C.G. of the Lamina of compound body.
6. A piece of wire of given length is bent to form a circular quadrant and its two bounding radii. Find the distance of the C.G. of the whole from the centre.
7. ABCD is of side $2 a$. E is a mid-point of the side BC . Find the distance from A of the center of gravity of the portion AECD.
8. A weight can be just supported on a rough inclined plane by a force P acting along the plane or by a force Q acting horizontally. Show that the weight is $\frac{P Q}{\sqrt{Q^{2} \sec ^{2} \lambda-P^{2}}}$.

Section C(8 X $2=16$)
9.
a) Define centre of gravity and moment of inertia.
b) State and prove parallelogram law of vectors.
c) Resolve a force of 100 kg into two components making angles of 60° and 90° with it on the opposite sides.
d) Find resultant of two like parallel forces acting on a rigid body.
e) Define couple and zero couple.
f) Define Laws of limiting friction
g) Define Laws of Statical friction.
h) Differentiate between Coplaner and Non-coplaner forces.

