Advanced Callculus-I

Sem-III (Syll-Dec-2020)
Time :- 3 hrs

SECTION-A $\quad 2 \times 6=12$

I (a) Prove that the function $f(x, y)=\sqrt{|x y|}$ is not differentiable at the origin.
I(b) Expand by Taylor's theorem, $x^{4}+x^{2} y^{2}-y^{4}$ about the point $(1,1)$ upto the terms of the second degree.

II Find all the points of maxima and minima of the function

$$
f(x, y)=x^{3}+y^{3}-63(x+y)+12 x y
$$

Also discuss the saddle points (if any) of the function.
III If α, β, γ are roots of the equation $\frac{x}{a+k}+\frac{y}{b+k}+\frac{z}{c+k}=1$ in k,
prove that $\frac{\partial(x, y, z)}{\partial(\alpha, \beta, \gamma)}=\frac{-(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)}{(b-c)(c-a)(a-b)}$.
IV (a) Give an example of a function of two variables in which the two repeated limits exist, but the simultaneous limit does not exist.

IV (b) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then show that $\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}\right)^{2}=\frac{9}{(x+y+z)^{2}}$

SECTION-B

$2 \times 6=12$
V (a) Evaluate $\int_{0}^{\pi} \int_{0}^{\pi}|\cos (x+y)| d x d y$.
$\mathrm{V}(\mathrm{b})$ Change the order of integration in $\int_{0}^{\frac{a}{\sqrt{2}}} \int_{y}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x d y$
VI Prove that $\iint \sqrt{\left|y-x^{2}\right|} d x d y=\frac{3 \pi+8}{6}$ over Area $A=[-1,1] \times[0,2]$.
VII (a) Evaluate $\iiint \frac{d x d y d z}{\sqrt{x^{2}+y^{2}+(z-2)^{2}}}$, over region $V=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$
VII (b) Find moment of inertia of the cylinder $x^{2}+y^{2} \leq a^{2}, 0 \leq z \leq h$ with uniform mass density 1 about the z-axis.

VIII (a) Find the centroid of a tetrahedron with uniform density 1 and bounded by the

$$
\begin{equation*}
\text { planes } x=0, y=0, z=0 \text { and } x+y+z=1 \tag{3}
\end{equation*}
$$

VIII (b) Show that $\iiint \frac{d x d y d z}{a^{2}+x^{2}+y^{2}+z^{2}}=\pi a(4-\pi)$ over the region $\dot{V}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq a^{2}\right\}$

SECTION-C

IX (a) Define saddle point.

IX (b) If $z=f(x, y)$ is a homogeneous function of x and y of degree n, then show that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z
$$

IX (c) State Young's Theorem.
IX (d) Show that the following functions are not independent of each other

$$
f(x, y)=\frac{x+y}{1-x y} \quad \text { and } g(x, y)=\tan ^{-1} x+\tan ^{-1} y
$$

IX (e) Evaluate $\iiint\left(z^{5}+z\right) d x d y d z$ over region $V=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$
IX (f) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{x-y}{x+y} d x d y$
$I X(g)$ Find the area of the region bounded by the line $y=x$ and the parabola $y^{2}=4 x$.
IX (h) Define Moments of Inertia of solid of mass M continuously distributed with mass Density $\mu(x, y, z)$ throughout a region $V \mathbf{C R}^{3}$

$$
21085 / \mathrm{NH} \quad(2 \times 8=16)
$$

