Roll No.

Total Pages : 4

13723/NH

C/2111

MATHEMATICAL METHODS-I

Option-(i)

Semester-V

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two questions each from Section A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION-A

1. Find the Fourier series to represent f(x) = xsinxfrom x = 0 to $x = 2\pi$.

13723/NH/517/W/6,910

[P. T. O.

2. Find the Fourier series of the function given by :

$$f(x) = \begin{cases} x & , \text{ when } 0 < x < \pi \\ 2x - x & , \text{ when } \pi < x < 2\pi. \end{cases}$$

Deduce that :
$$\frac{1}{1^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{8}$$
. 6

3. Expand $f(x) = x - x^3$ as Fourier series in interval -l < x < l. 6

4. If
$$(x) = \begin{cases} x & , \text{ when } 0 < x < \pi / 2 \\ x - x & , \text{ when } \pi / 2 < x < \pi \end{cases}$$
, show that :

$$f(x) = \frac{4}{x} \left[sinx - \frac{sin3x}{3^2} + \frac{sin3x}{3^2} + \dots \right].$$
 6

SECTION-B

- 5. State and prove Existence theorem of Laplace transform. 6
- 6. (a) Find the Laplace transform of $sin\sqrt{t}$. 6
 - (b) Evaluate $: \int_0^\infty t^3 t^{-1} sint dt.$
- 13723/NH/517/W/6,910 2

- (a) State and prove Second Shifting theorem of inverse Laplace transform.
 - (b) Find the inverse Laplace transform of $\frac{1}{s^3(s+1)}$.
- 8. Apply Convolution theorem to find inverse Laplace

transform of
$$\frac{1}{(s^2 + a^2)^3}$$
. 6

SECTION-C

- 9. Answer the following questions briefly : $8 \times 2=16$
 - (i) Define complex form of Fourier series.
 - (ii) If *m* and *n* are the integers, then evaluate $\int_{a}^{a+2x} \cos nx \, dx$.
 - (iii) For a periodic function of period 2π , prove that $\int_{\pi}^{-\pi} f(x) dx = \int_{\pi}^{-\pi} f(c+x) dx$.
 - (iv) State Main theorem.

- (v) Define Gamma function.
- (vi) Prove that for $t \ge 0$, $L(1) = \frac{1}{s}$.
- (vii) State cosine integral function.

(viii) Prove
$$\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$$
.

13723/NH/517/W/6,910 3