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MATHEMATICAL METHODS–I

Option–(i)

Semester–V

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two

questions each from Section A and B carrying

6 marks each and the entire Section C

consisting of 8 short answer type questions

carrying 2 marks each.

SECTION—A

1. Find the Fourier series to represent ( ) = f x xsinx

from  to = 0 = 2 .πx x 6

R

2. Find the Fourier series of the function given by :
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Deduce that : 
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3. Expand ( ) 3= −f x x x  as Fourier series in interval

< < .−l x l 6
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SECTION—B

5. State and prove Existence theorem of Laplace

transform. 6

6. (a) Find the Laplace transform of .sin t 6

(b) Evaluate :
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7. (a) State and prove Second Shifting theorem of

inverse Laplace transform.

(b) Find the inverse Laplace transform of 3

1
.

( +1)s s

8. Apply Convolution theorem to find inverse Laplace

transform of 
2 2 3

1
.

( + )s a
6

SECTION—C

9. Answer the following questions briefly : 8×2=16

(i) Define complex form of Fourier series.

(ii) If m and n are the integers, then

evaluate
2

.
+

∫
a x

a
cos nx dx

(iii) For a periodic function of period 2π , prove

that ( ) ( ) .
−π −π

π π
= +∫ ∫f x dx f c x dx

(iv) State Main theorem.

(v) Define Gamma function.

(vi) Prove that for 
1

0, (1) .≥ =t L
s

(vii) State cosine integral function.

(viii) Prove 
0

.
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