Roll No. \qquad Total Pages : 5
13663/NH

B/2111

MECHANICS

Paper-III

Semester-III

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION—A

1. ABC is a triangle and O its circumcentre. AO meets
$B C$ in D. Show that the components of force $A D$ along AB and AC are :
$\frac{A B \sin 2 B}{\sin 2 B+\sin 2 C}$ and $\frac{A C \sin 2 C}{\sin 2 B+\sin 2 C}$ respectively.
2. $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are three points on the circumference of circle. Forces $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ acting along AB, BC and the tangent at B are in equilibrium. Show that P and Q are inversely proportional to the sides $A B$ and BC. 6
3. AB is a straight rod, of length 2 a and weight $\lambda \mathrm{W}$, with the lower end A on the ground at the foot of a vertical wall AC, B and C being at the same vertical height 2 b from A , a heavy ring of weight W , is free to move along a string of length $2 l$, which joins B and C. If the system be in equilibrium with the ring at the middle point of the string, show that:

$$
l^{2}=a^{2}-b^{2}\left[\frac{\lambda^{2}+2 \lambda}{(\lambda+1)^{2}}\right] .
$$

4. State and prove Varignon's theorem.

SECTION-B

5. Find the latus rectum, the vertex, the focus and the height of the directrix of the parabola traced out by a projectile.
6. Find the escape velocity of a particle projected from the surface of Earth where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and $R=6370 \mathrm{~km}, \mathrm{R}$ being the radius of Earth. 6
7. A body sliding down a smooth inclined plane is observed to cover equal distances, each to l, in consecutive intervals of time t_{1} and t_{2}. Show that inclination of the plane is : 6
$\sin ^{-1}\left[\frac{2 l\left(t_{1}-t_{2}\right)}{g t_{1} t_{2}\left(t_{1}+t_{2}\right)}\right]$.
8. A particle executing S.H.M. has amplitude ' a '. Show that the distance of the point from the centre at
which the velocity is half of the maximum velocity
is $\frac{\sqrt{3}}{2} a$.

SECTION—C

9. Answer the following questions briefly : $8 \times 2=16$
(i) Write down the necessary and sufficient conditions of equilibrium of a number of coplanar-concurrent forces.
(ii) State Newton's third law of motion and explain with two examples.
(iii) Define the terms Force, Body, Equilibrium.
(iv) State the Lami's theorem and converse of Lami's theorem.
(v) Define the terms Speed, Velocity and Acceleration.
(vi) What is meant by Projectiles, Trajectory and Angle of projection?
(vii) Explain the term acceleration due to gravity with example.
(viii) Explain the Periodic Motion with example.

Is Simple Harmonic motion periodic?

