Roll No.

Total Pages : 6

13662/NH

B/2111

LINEAR PROGRAMMING

Paper-II

Semester-III

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION-A

1. A company has two grades of inspectors 1 and 2 who are to be assigned to a quality inspection work.

13662/NH/509/W/6,510

[P. T. O.

It is required that at least 1800 pieces are inspected per 8-hour day. Grade 1 inspectors can check pieces at the rate of 25 per hour with an accuracy of 98%. Grade 2 inspectors can check pieces at the rate of 15 pieces per hour with an accuracy of 95%. The wage rate for grade 1 inspector is ₹40 per hour while that of grade 2 is $\gtrless 30$ per hour. Each time an error is caused by the inspector the cost to the company is $\gtrless 20$. The company has eight grade 1 and ten grade 2 inspectors. The company wants to determine the optimal assignment of inspectors to minimize total inspection cost. Formulate it as LPP and solve graphical method. 6

2. Solve simplex method Maximize $2x_1 - x_2 + x_3$ subject to the constraints : 6

 $\begin{array}{l} 3x_1+x_2+x_3\leq 60,\,x_1-x_2+2x_3\leq 10,\,x_1+x_2-x_3\leq 20\ ;\\ x_1+x_2-x_3\geq 0. \end{array}$

13662/NH/509/W/**6,510** 2

3. Solve using Big M method.

Maximize $z = x_1 + 2x_2 + 3x_3 - x_4$ subject to the constraints:

6

$$\begin{aligned} \mathbf{x}_1 + 2\mathbf{x}_2 + 3\mathbf{x}_3 &= 15. \ 2\mathbf{x}_1 + \mathbf{x}_2 + 5\mathbf{x}_3 &= 20. \\ \mathbf{x}_1 + 2\mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 &= 10. \ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 &\geq 0. \end{aligned}$$

4. Solve the LPP maximize $z = 22x_1 + 30x_2 + 25x_3$ subject to constraints :

$$\begin{array}{l} 2x_1\,+\,2x_2\,\leq\,100,\;2x_1\,+\,x_2\,+\,x_3\,\leq\,100,\\ x_1\,+\,2x_2\,+\,2x_3\,\leq\,100\ ;\ x_1,\;x_2,\;x_3\,\geq\,0. \end{array}$$

SECTION-B

5. Find the initial solution in the following transportion problem by Vogel's approximation method. Also obtain the optimum solution : 6

	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	Supply
\mathbf{F}_1	1	2	3	4	30
\mathbf{F}_{2}	7	6	2	5	50
$\mathbf{F_3}$	4	3	2	7	35
Demand	15	30	25	45	
13662/NH/509/W/6,510			3		[P. T. O.

6. Find the initial solution in the following transportation problem by least cost method. Also obtain the optimum solution :

	D	Ε	\mathbf{F}	Supply
Α	2	1	4	50
В	3	1	2	150
С	5	6	7	200
Demand	100	130	200	

- Give the mathematical formulation of assignment problem. Give two applications of assignment problem. Explain a method of solving the assignment problem.
- 8. Solve the following assignment problem using Hungarian method. The matrix entries are processing times in hour : 6

Onovations

		Operations				
		\mathbf{O}_{1}	\mathbf{O}_2	\mathbf{O}_3	\mathbf{O}_{4}	\mathbf{O}_{5}
	\mathbf{J}_1	5	5	7	4	8
	\mathbf{J}_2	6	5	8	3	7
Jobs	\mathbf{J}_3	6	8	9	5	10
	\mathbf{J}_4	7	6	6	3	6
	\mathbf{J}_5	6	7	10	6	11

SECTION-C

- 9. Answer the following questions briefly : $8 \times 2 = 16$
 - (i) Differentiate between basic variable and slack variable.
 - (ii) Explain the term convex set. Is intersection of two convex sets is a convex set?
 - (iii) Explain the terms Hyper planes and Halfspaces.
 - (iv) Write down the steps of Vogel's approximation method to find the initial basic feasible solution.
 - (v) Write down the condition when transportation problem has alternative optimal solution.
 - (vi) Define the term degeneracy in the transportation problem.

- (vii) What is Feasible region? Is it necessary that it should always be a convex set?
- (viii) What are similarities between Transportation and Assignment problem?