Roll No. \qquad

13603/NH

A-2111

LINEAR ALGEBRA

Paper-III

Semester-I
Time Allowed : 3 Hours]
[Maximum Marks : 40
Note : The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION—A

1. By using row transformations, find the inverse of the matrix A where :

$$
\mathrm{A}=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-3 & 5 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

2. Find the rank of the matrix :

$$
\left[\begin{array}{rrrrr}
0 & 2 & 2 & 1 & -5 \\
1 & -2 & -3 & -3 & 1 \\
3 & -4 & -7 & -8 & -2
\end{array}\right] .
$$

3. Examine the consistency of the following equations and if consistent, determine the complete solution :
$x-y+2 z=4$
$3 x+y+4 z=6$
$x+y+z=1$.
4. Verify Cayley-Hamilton theorem for the matrix :
$\mathrm{A}=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
6

SECTION-B

5. (a) Is the vector $(2,-5,3)$ in $V_{3}(\mathrm{R})$ a linear combination of the vectors :

$$
\begin{equation*}
(1,-3,2),(2,-4,-1) \text { and }(1,-5,7) ? \tag{3}
\end{equation*}
$$

(b) The Union of two subspaces is not necessarily a subspace. Justify by examine.
6. Define the Finite dimensional vector space. Show that any two bases of a finitely generated vector space have the same number of elements. 6
7. Prove that the set $\mathrm{L}(\mathrm{V}, \mathrm{W})$ of all linear transformations from $\mathrm{V}(\mathrm{F})$ to $\mathrm{W}(\mathrm{F})$ forms a vector space over the field F with respect to addition and sclar multiplication of compositions. 6
8. If the matrix of a linear operator T on R^{3} relative to the usual basis is :

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right] .
$$

then find the matrix of T relative to the basis :
$B=\{(1,2,2),(1,1,2),(1,2,1)\}$.

SECTION—C

9. Attempt all of the following questions : $8 \times 2=16$
(i) If $\mathrm{A}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, find the rank of A^{2}.
(ii) Define consistency of a system of linear equations.
(iii) Examine the linear independent or dependent of the rows of the matrix :
$\left[\begin{array}{rrr}3 & 2 & 4 \\ 1 & 0 & 2 \\ 1 & -1 & -1\end{array}\right]$, hene find its rank.
(iv) Prove that the eigenvalues of an idempotent matrix are either zero or unity.
(v) Under what condition on the scalar $b \in R$, are the vectors $(b, 1,0),(1, b, 1)$ and $(0,1, b)$ in $V_{3}(R)$ linearly dependent?
(vi) Discuss whether or not R^{2} is a subspace of R^{3}. Justify.
(vii) Show that the mapping $T: R^{2} \rightarrow R$ defined by $T(x, y)=|2 x-3 y|$ is not a linear transformation.
(viii) Verify Rank-Nullity theorem for the linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+2 y, y-z, x+2 z)$.
