Roll No. \qquad Total Pages : 4
13601/NH

A-2111

CALCULUS-I

Semester-I

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION—A

1. (a) Examine the continuity of the function: 3 $f(x)=[x]+[1-x]$ at $x=0$.
(b) If $\mathrm{y}=\sin \left(\mathrm{m} \sin ^{-1} \mathrm{x}\right)$, prove that:
$\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$.
2. Prove that:
$\frac{d^{n}}{\mathrm{dx}^{\mathrm{n}}}\left[\frac{\log \mathrm{x}}{\mathrm{x}}\right]=\frac{(-1)^{\mathrm{n}} \mathrm{n}!}{\mathrm{x}^{\mathrm{n}+1}}\left[\log \mathrm{x}-1-\frac{1}{2}-\frac{1}{3}-\ldots-\frac{1}{\mathrm{n}}\right]$.
3. (a) Find the points of inflection of the curve $y=\frac{x^{2}+1}{x^{2}-1}$. Also determine the values of x for which function is concave upward and concave downward.
(b) Find the asymptotes of the curve :

$$
x^{3}+y^{3}-3 a x y=0
$$

4. Trace the curve $\mathrm{y}=(\mathrm{x}+1)^{2}(\mathrm{x}-3)$.

SECTION—B

5. Prove that the function $f(x, y)=\sqrt{|x y|}$ is not differentiable at the origin, but that $f(x, y)$ is
continuous at the origin and both f_{x}, f_{y} exist at the origin and have the value zero. 6
6. If $\mathrm{z}(\mathrm{x}+\mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}$, then $\left(\frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\frac{\partial \mathrm{z}}{\partial \mathrm{y}}\right)^{2}=4\left(1-\frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\frac{\partial \mathrm{z}}{\partial \mathrm{y}}\right)$.
7. (a) Expand $x^{4}+x^{2} y^{2}-y^{4}$ about the point (1, 1) upto the terms of the second degree.
(b) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
8. (a) Let $f: R^{3} \rightarrow R$ be defined as $f(x, y, z)=x y z$. Determine x, y, z for maximum of f where $\mathrm{xy}+2 \mathrm{yz}+2 \mathrm{zx}=108$. 4
(b) Verify Euler's theorem for the function :

$$
\begin{equation*}
z=x^{4} \log \frac{y}{x} \tag{2}
\end{equation*}
$$

SECTION—C

9. Answer all the following questions : $\quad 8 \times 2=16$
(i) Find the nth derivative of $\sqrt{\mathrm{zx}+\mathrm{b}}$.
(ii) State Leibnitz's theorem on derivatives.
(iii) Define the Oblique asymptote.
(iv) Determine a and b so that curve $y=a x^{3}+b x^{2}$ has a point of inflection at $(-1,2)$.
(v) If $u=e^{x} \sin y, x=\log t, y=t^{2}$, find $\frac{d u}{d t}$ by partial differentiation. Also verify with direct calculations.
(vi) Show that: $f(x, y)=x^{2}+y-1$ is continuous at $(1,-2)$.
(vii) Find points of extreme values, if any of the function $f(x, y)=x^{3}+3 x+y^{3}-y+4$.
(viii) Find the percentage error in calculating the area of a rectangle when an error of 2 percent is made in measuring its sides.
