L-4/2111
 FIELD THEORY-MM602/AMC—309
 Semester-III
 (Common for AMC/Math)

Time Allowed : Three Hours]
[Maximum Marks : 70
Note :- The candidates are required to attempt two questions each from Section A and B. Section C will be compulsory.

SECTION-A

1. Let $F \subseteq E \subseteq K$ be fields. If $[K: E]<\infty$ and $[E: F]<\infty$, then prove that:
(i) $[\mathrm{K}: \mathrm{F}]<\infty$ and
(ii) $[\mathrm{K}: \mathrm{F}]=[\mathrm{K}: \mathrm{E}][\mathrm{E}: \mathrm{F}]$.
2. Let E and F be fields and let $\sigma: \mathrm{F} \rightarrow \mathrm{E}$ be an embedding of F into E. Then prove that there exist a field K such that F is a subfield of K and σ can be extended to an isomorphism of K onto E .
3. (i) Define the splitting field of a polynomial by giving an example. Prove that upto isomorphism there is only one splitting field of a polynomial.
(ii) Find the splitting field of $\mathrm{x}^{4}-2 \in \mathrm{Q}[\mathrm{x}]$ over Q and its degree of extension.
4. Define a separable element and separable extension. Prove that if E is a finite separable extension of a field F , then E is a simple extension of F.
$2 \times 10=20$

SECTION-B

5. Prove that the group $\mathrm{G}(\mathrm{Q}(\alpha) / \mathrm{Q})$ where $\alpha^{5}=1$ and $\alpha \neq 1$ is isomorphic to the cyclic group of order 4 .
6. State and prove fundamental theorem of Galois theory.
7. Let F contain a primitive $\mathrm{n}^{\text {th }}$ root of unity. Then prove that the following statements are equivalents :
(i) E is a finite cyclic extension of degree n over F .
(ii) E is the splitting field of an irreducible polynomial $\mathrm{x}^{\mathrm{n}}-\mathrm{b} \in \mathrm{F}[\mathrm{x}]$.
8. Prove that $f(x) \in F[x]$ is solvable by radicals over F if and only if its splitting field E over F has solvable Galois group $G(E / F)$. $2 \times 10=20$

SECTION-C

9. Write in brief :
(a) Show that $\mathrm{x}^{3}+3 \mathrm{x}+2 \in \mathrm{Z} /(7)[\mathrm{x}]$ is irreducible over the field $Z /(7)$.
(b) Let $[E: F]=2$, where E is an extension of F then show that E is normal extension of F.
(c) State Einstein's criterion for irreducible polynomial.
(d) Show that $\mathrm{Q}(\sqrt{2}, \sqrt{5})=\mathrm{Q}(\sqrt{2}+\sqrt{5})$.
(e) State Kronecker's theorem.
(f) Prove that Galois group of $x^{4}+x^{2}+1$ is the same as that of $x^{6}-1$ and is of order 2 .
(g) Define cyclic extension and extension by radicals of field.
(h) Express the symmetric function $\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}$ as rational functions of elementary symmetric functions.
(i) State fundamental theorem of algebra.
(j) Show that $\mathrm{x}^{3}+\mathrm{ax}^{2}+\mathrm{bx}+1 \in \mathrm{Z}[\mathrm{x}]$ is reducible over Z if and only if either $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}+\mathrm{b}=-2 . \quad 10 \times 3=30$
