K-19/2111

13024/NB

Mathematical Foundation of Computer Science-114

Sem-I

Time: 3hrs

M.M.- 70

Note: The Candidates are required to attempt two questions each from Section A & B Section

į,

SECTION-A

1.	State and Prove De-Morgan's Law of Set Theory.	(10.5)
2.	Let $f: X \to Y$ and $g: Y \to Z$ and let f, g be one-one onto maps, then	n prove that
2	$gof: X \to Z$ is also one-one and onto. Also $(gof)^{-1} = f^{-1}og^{-1}$.	(10.5)
3. 4.	Define sorting. Explain any one sorting algorithm with example. Use Principle of Mathematical Induction to show that	(10.5)
	$1^3 + 2^3 + 3^3 \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2, \forall n \in \mathbb{N}.$	(10.5)
	SECTION-B	

э.	Solve $S(k) - S(k-1) + \delta S(k-2) = 0$.	(10.5)	
6.	Prove that the distinct equivalence classes of an equivalence relation on a set form	a partition	
	of that set.	(10.5)	
7.	Let $G = (V, E)$ be a connected planar graph and let R be the number of regions defi		
	any planar depiction of G, then $R = E - V + 2$.	(10.5)	
8.	Construct an Euler Path or Euler Circuit in the following graph:	(10.5)	

SECTION-C

- 9. Attempt the following parts:
 - **a.** Find power set of $\{a, b, c\}$.
 - **b.** Define Symmetric difference.
 - **c.** What do you mean by inverse of a relation?
 - d. /State the Pigeonhole principle.
 - e. Define Tautology and Contradiction with the help of example.
 - Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$. f.
 - g. Define an equivalence relation.
 - h. What do you mean by shortest path problem?
 - Define floor function and ceiling function. i.
 - j. What do you mean by complexity of an algorithm?