Time: 3hrs C will be compulsory

SECTION-A

1. State and Prove De-Morgan's Law of Set Theory.
2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ and let f, g be one-one onto maps, then prove that gof : $X \rightarrow Z$ is also one-one and onto. Also $(g o f)^{-1}=f^{-1} \circ g^{-1}$.
3. Define sorting. Explain any one sorting algorithm with example.
4. Use Principle of Mathematical Induction to show that

$$
\begin{equation*}
1^{3}+2^{3}+3^{3} \ldots \ldots \ldots \ldots \ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}, \quad \forall n \in N \tag{10.5}
\end{equation*}
$$

SECTION-B

5. Solve $S(k)-7 S(k-1)+6 S(k-2)=0$.
6. Prove that the distinct equivalence classes of an equivalence relation on a set form a partition of that set.
7. Let $G=(V, E)$ be a connected planar graph and let R be the number of regions defined by any planar depiction of G , then $R=|E|-|V|+2$.
8. Construct an Euler Path or Euler Circuit in the following graph:

SECTION-C

9. Attempt the following parts:
a. Find power set of $\{a, b, c\}$.
b. Define Symmetric difference.
c. What do you mean by inverse of a relation?
d. State the Pigeonhole principle.
e. Define Tautology and Contradiction with the help of example.
f. Show that $f(x)=x^{2}+2 x+1$ is $\mathrm{O}\left(x^{2}\right)$.
g. Define an equivalence relation.
h. What do you mean by shortest path problem?
i. Define floor function and ceiling function.
j. What do you mean by complexity of an algorithm?
(10x2.8=28)
