Roll No	Total Pages : 6	SECTION-A	
	12980/N	1. (a) Show that a local diffeomorphism $f: S_1 \rightarrow S_2$	
K–10/2111 DIFFERENTIAL GEOMETRY Paper–MATM–1104T/AMCM 1105T		is equireal if and only if, for any surface patch $\sigma(u, v)$ on S_1 , the first fundamental forms $E_1 du^2 + 2F_1 du dv + G_1 dv^2$ and $E_2 du^2 + 2F_2 du dv + G_2 dv^2$ of the patches σ on	
Semester (Common for AMC Time Allowed : 3 Hours]		S ₁ and $f \circ \sigma$ on S ₂ satisfy $E_1G_1 - F_1^2 = E_2G_2 - F_2^2$. 5 (b) What is the effect of dilation of R ³ to the Gaussian and mean curvatures of a	
10 marks each and	ctions A and B carrying the entire Section C answer type questions	surface S?52. Define a Reparametrization of a map. Prove that a parametrized curve has a unit speed reparametrization if and only if it is regular.10	

12980/N/699/W/1,510

12980/N/699/W/1,**510** 2

- 3. (a) If σ is a surface patch of an oriented surface S, then the matrix of the Weingarten map W with respect to the basis $\{\sigma_u, \sigma_v\}$ of $T_p(S)$ is $F_I^{-1}F_{II}$ where $F_I = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$ and $F_{II} = \begin{bmatrix} L & M \\ M & N \end{bmatrix}$. 5
 - (b) Give the geometrical interpretation of a tangent vector.
- 4. Discuss geometrically the First Fundamental Form. If $Edu^2 + 2Fdudv + Gdv^2$ is the first fundamental form of a surface patch $\sigma(u, v)$ of a surface S, show that for a point p in the image of σ and $v, w \in T_p(S)$, we have

 $\langle v, w \rangle = Edu(v)du(w) +$

 $\mathbf{F} \left[d\mathbf{u}(\mathbf{v}) d\mathbf{v}(\mathbf{w}) + d\mathbf{u}(\mathbf{w}) + d\mathbf{v}(\mathbf{v}) \right] + \mathbf{G} d\mathbf{v}(\mathbf{v}) d\mathbf{u}(\mathbf{w}).$

12980/N/699/W/1**,510** 3

[P. T. O.

SECTION-B

- 5. If (τ) denotes the length of a part of a smooth family of curves between any two points on the surface patch, then the unit speed curve γ is a geodesic iff $\frac{d}{dt}$ $(\tau) = 0$ when $\tau = 0$ for all families of curves γ^{T} with $\gamma^{0} = \gamma$. 10
- 6. (a) Show that the Gaussian curvature of a surfaceS is preserved by local isometries. 5
 - (b) Prove that the Codazzi-Mainardi equations reduce to $L_v = \frac{1}{2}E_v\left(\frac{L}{E} + \frac{N}{G}\right)$ and $N_u = \frac{1}{2}G_u\left(\frac{L}{E} + \frac{N}{G}\right)$ where $Edu^2 + Gdu^2$ is the first fundamental form and $Ldu^2 + Ndv^2$ is the second fundamental form. 5
- Every connected compact surface whose Gaussian curvature is constant is a sphere.
 10

12980/N/699/W/**1,510** 4

- 8. (a) Prove that every Helicoid is a minimal surface. 5
 - (b) Prove that any local isometry between two surfaces takes the geodesics of one surface to the geodesics of the other.

SECTION-C

- 9. Write short answer on the following : $10 \times 3=30$
 - (i) Show that the area of a surface patch is unchanged by reparametrization.
 - (ii) Define the collection of coordinate neighbourhoods and surface which constitute an atlas for the sphere S².
 - (iii) Define Meridians and Parallels of a surface.
 - (iv) Prove that a unit speed curve on a surface is geodesic iff its geodesic curvature is zero everywhere.

- $\begin{array}{ll} (v) & A \mbox{ local diffeomorphism } f:S_1 \rightarrow S_2 \mbox{ is a local } \\ & \mbox{ isometry iff for any surface patch } \sigma_1 \mbox{ of } S_1, \\ & \mbox{ the patches } \sigma_1 \mbox{ and } f \circ \sigma_1 \mbox{ on } S_1 \mbox{ and } S_2 \\ & \mbox{ respectively have the same first fundamental } \\ & \mbox{ form.} \end{array}$
- (vi) Differentiate between a level curve and a parametrized curve. Is parametrization of a curve unique ? Explain with the help of an example.
- (vii) Find the second fundamental form of a unit cylinder $\sigma(u, v) = (\cos v, \sin v, u)$.
- (viii) Find the unit speed reparametrization of the curve $\gamma(t) = (-\sin t, \cos t, 1)$ by its arc length starting from (-1, 0, 1).
- (ix) State and prove Geodesic equations.
- (x) Show that if the tangent vector of parameterized curve is constant, the image of the curve is a part of the straight line.

12980/N/699/W/**1,510** 5 [P. T. O.

12980/N/699/W/**1,510** 6