Further, prove that if all the A_{α} are also closed and cover the whole space X, then a subset B of X is closed in X if and only if each $\mathrm{B} \cap \mathrm{A}_{\alpha}$ is closed in the subspace A_{α}.

SECTION-B

5. Prove that the product of connected spaces is connected.
6. Prove that an open subset of the Euclidean space $\mathbf{R}^{\mathbf{n}}$ is connected if and only if it is path connected.
7. Prove that every separable metric space second countable.
8. What is a totally bounded metric space ? Prove that every sequentially compact metric space is totally bounded.

SECTION—C

9. (i) Give two bases for a discrete topology on the real line.
(ii) Is Sierpinski space metrizable? Justify.
(iii) What is the frontier of the set of all rational numbers in the real line with the usual topology? Justify your answer.
(iv) What do you understand from the statement that subspace of a subspace is a subspace?
(v) Infinite product of proper open subsets of a space is Never open. Why?
(vi) Is the product of totally disconnected space always totally disconnected? Justify.
(vii) Give an example of a connected space which is not path connected.
(viii) Prove that in Hausdorff spaces sequences have at most one limit.
(ix) Define one point compactification of a space.
(x) What is a locally compact space? Give an example of a locally compact space which is not compact.

K-10/2111
TOPOLOGY—MAT-1103T/AMCM-1103T
Semester-I
(Common for Math/AMC)

Time Allowed : Three Hours]

[Maximum Marks :

Note:- The candidates are required to attempt two questions each from Sections A and B carrying 10 marks each and the entire Section C consisting of ten short answer type questions carrying 3 marks each.

SECTION—A

1. How many sequences of terms consisting of only 0 or 1 are there ? Justify your answer. Prove that there cannot be a surjection from any set X to its set of all subsets $\mathbf{P}(\mathrm{X})$.
2. What are equivalent bases for a topological space ? Give an example of equivalent bases. Prove a necessary and sufficient condition for two bases to be equivalent.
3. Prove that a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a continuous open bijection if and only if it has a continuous inverse.
4. Let $\left\{\mathrm{A}_{\alpha}\right\}_{\alpha}$ be a neighborhood-finite family of subsets of a space X . Prove that union of the closures of all the A_{α} is a closed set.
