PC-12978/N

> K-10/2111
> MATHEMATICAL ANALYSIS-I
> (Math 1102 T/AMCM-1102 T)
> (Semester-I)

Time : Three Hours]
[Maximum Marks : 70
Note : Attempt two questions each from Section A and B carrying 10 marks each and the entire Section C consisting of 10 short answer type questions carrying 3 marks each.

SECTION-A

I. State and prove implicit function theorem.
II. If m is countably additive, translation invariant measure defined on a σ algebra containing P then P is not measurable.
III. Show that the family of measurable sets is an algebra of sets.
IV. A linear operator T on a finite dimensional vector space X is one to one if and only if $R(T)=X$, where $R(T)$ is range of T .

SECTION-B

V. State and prove Vitali's lemma.
VI. Let f be defined and bounded on a measurable set E with $m \mathrm{E}$ is finite. In order that $\inf _{\psi \geq f} \int_{\mathrm{E}} \psi=\sup _{f \geq \varphi} \int_{\mathrm{E}} \varphi$.
VII. A function f is of bounded variation on $[a, b]$ iff it can be written as a difference of two monotone real valued functions on $[a, b]$.
VIII. Let f be an increasing real valued function defined on $[a, b]$. Then f is differentiable almost everywhere. Moreover, the derivative f^{\prime} is measurable and

$$
\int_{a}^{b} f^{\prime}(x) d x \leq f(b)-f(a)
$$

SECTION-C

IX. (a) Define outer measure of a set. If $m * \mathrm{E}=0$, then E is measurable.
(b) Suppose f maps convex set $\mathrm{E} \subset \mathrm{R}^{n}$ into R^{m}, f is differentiable on E and there exists a real number M such that $\|f(x)\| \leq \mathrm{M}, \forall x \in \mathrm{E}$, then

$$
|f(b)-f(a)| \leq \mathrm{M}|b-a|, \forall a, b \in \mathrm{E} .
$$

(c) Show that outer measure of a countable set is zero.
(d) Let $\left\{\mathrm{E}_{i}\right\}$ be a sequence of measurable functions such that E_{i} 's are pairwise disjoint then

$$
m \bigcup_{i=1}^{n} \mathrm{E}_{i}=\sum_{i=1}^{n} m \mathrm{E}_{i}
$$

(e) Let T_{1} and T_{2} be two linear operators s.t. $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{~L}\left(\mathrm{R}^{n}\right)$, then $\left\|\mathrm{T}_{1}+\mathrm{T}_{2}\right\| \leq\left\|\mathrm{T}_{1}\right\|+\left\|\mathrm{T}_{1}\right\|$.
(f) If f is a integrable function defined on E , then $|f|$ is also integrable and $\left|\int f\right| \leq \int|f|$.
(g) Define simple function. Show that product of two simple functions is also simple.
(h) Let $<f_{n}>$ be a sequence of measurable functions that converges in measure to f, then there is a subsequence $<f_{m}>$ that converges to f almost everywhere.
(i) If f is absolutely continuous on $[a, b]$ then f has a derivative almost everywhere on $[a, b]$.
(j) State and prove Jensen inequality.

