## K-8/2111 MATHEMATICS FOR CHEMISTS-1104T

## Semester-I

Time Allowed : 3 Hours]
[Maximum Marks : 55
Note:- The candidates are required to attempt two questions each from Sections A and B. Section C will be compulsory.

## SECTION-A

1. (a) Evaluate divergence of the function $F=x^{2} y z \hat{i}+x y^{2} z \hat{j}+x y z^{2} \hat{k}$ at the point (1, 2, 3).
(b) Find the value of $\lambda$, so that $\overrightarrow{\mathrm{a}}(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=0$, where

$$
\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{~b}}=\hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}} .
$$

2. Verify the Cayley Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$.
3. Find $\lambda$ and $\mu$ so that the system of linear equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$
have (i) no solution, (ii) infinite number of solutions,
(iii) a unique solution
4. (a) Find the Cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.
(b) If $\mathrm{A}+\mathrm{B}=\frac{\pi}{4}$ then find the value of $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{A} \tan \mathrm{B}$.

## SECTION-B

5. (a) If $u=\sin ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
(b) Evaluate $\int \frac{x}{(x-1)(x+3)} d x$ by using partial fraction.
6. If the function $f(x)=\left\{\begin{array}{ll}3 a x+b & ; x>1 \\ 11 & ; x=1 \\ 5 a x-2 b & ; x<1\end{array}\right.$ is continuous at $x=1$ find the values of $a$ and $b$.
7. Solve in series the equation using :

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0
$$

8. (a) Solve the differential equation :

$$
\left(3 x^{2}-y^{2}\right) d y-2 x y d x=0
$$

(b) Solve the differential equation :

$$
\frac{d y}{d x}=\frac{y-x}{y+x}
$$

## SECTION—C

9. Do briefly :
(a) Find the value of $\sin 15^{\circ}$.
(b) Find the dot product of the vectors $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\hat{i}-2 \hat{k}$.
(c) Define dot and cross products for two vectors.
(d) Define Symmetric and Hermitian matrices.
(e) If $A=\left[\begin{array}{cc}2 & -1 \\ 4 & 2\end{array}\right], B=\left[\begin{array}{cc}4 & 3 \\ -2 & 1\end{array}\right]$. Find $2 A-B$.
(f) Define eigen values and eigen vectors.
(g) State the conditions for finding the maximum and minimum of functions of two variables $f(x, y)$.
(h) Check whether the function:

$$
\mathrm{f}(\mathrm{x})= \begin{cases}1+\mathrm{x} ; & \mathrm{x} \leq 2 \\ 5-\mathrm{x} ; & \mathrm{x}>2\end{cases}
$$

is differential or not at $\mathrm{x}=2$ ?
(i) Evaluate $\int x \sin x d x$.
(j) Check whether the equation :

$$
\left(1+2 x y \cos x^{2}-2 x y\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0
$$

is exact or not?
(k) Find the equation of the line which passes through the point $(2,1,3)$ and is parallel to the vector $2 \hat{i}+3 \hat{j}-4 \hat{k}$. $11 \times 2=22$
五

