Roll No. \qquad

11802/NJ

O-6/2111

MECHANICS-I

Paper-502/504

Semester-V
(Common for MC \& B.Sc.
Hons. in Mathematics Part-II) Sem.-V

Time Allowed : 3 Hours] [Maximum Marks : 70

Note : The candidates are required to attempt two questions each from Sections A and B carrying 10 marks each and the entire Section C consisting of 10 short answer type questions carrying 3 marks each.

SECTION—A

1. The resultant of two forces P and Q acting at angle θ is equal to $(2 \mathrm{~m}+1) \sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$; when they act at an angle $\frac{\pi}{2}-\theta$, the resultant is $(2 \mathrm{~m}-1) \sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$. Show that $\tan \theta=\frac{m-1}{m+1}$.
2. Six coplanar forces act on a rigid body along the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$ and FA of a regular hexagon of side 1 unit. Their magnitudes are 10, 20, 30, 40, P and Q units respectively. Find P and Q so that the system reduces to a couple and show that the moment of couple is $75 \sqrt{3}$ units. 10
3. Two forces P and Q acting at a point have a resultant R. If P is doubled, R is doubled and if Q is doubled and reversed in direction, even then R is doubled. Show that $P: Q: R:: \sqrt{6}: \sqrt{2}: \sqrt{5}$. 10
4. A force F acts at a point $(3,4)$ of the XY-plane. The force is directed away from the origin and inclined at 60° to the X -axis. The horizontal component of F is 5 kg . wt.
(a) Determine the force F.
(b) Using Varignon's theorem, calculate the moment of F about the origin.
(c) Find the perpendicular distance of the origin from the line of action of F .

SECTION-B

5. Two equal beams AB and AC , each of weight W connected by a hinge at A are placed in a vertical plane with their extremities B and C resting on a smooth horizontal plane, they are kept from falling by strings connecting B and C with the mid-points of opposite sides. Show that the tension of either
string is $\frac{1}{8} \mathrm{~W} \sqrt{1+9 \cot ^{2} \alpha}$ where α is the inclination of either beam to the horizontal. Also, show that the action of the hinge on the either beam is $\frac{3}{4} \mathrm{~W} \cot \alpha$.
6. A light string of length l is fastened to two points A and B at the same level at distance ' a ' apart. A ring of weight W can slide on the string and horizontal force P is applied to it such that it is in equilibrium vertically below B. Show that $P=\frac{a W}{l}$ and tension in the string is $\frac{\mathrm{W}\left(I^{2}+\mathrm{a}^{2}\right)}{2 I^{2}}$.
7. Equal weights P and P are attached to two strings ACP and BCP passing over a smooth peg C. AB is a heavy beam of weight W , whose CG is a c meters from A and d meters from B, show that $A B$ is inclined to the horizontal at an angle :

$$
\tan ^{-1}\left[\frac{\mathrm{c}-\mathrm{d}}{\mathrm{c}+\mathrm{d}} \tan \left(\sin ^{-1} \frac{\mathrm{~W}}{2 \mathrm{P}}\right)\right]
$$

8. A body of weight W can just be sustained on a rough inclined place by a force P and just dragged up the plane by a force Q, P and Q both acting up the line of the greatest slope. Show that coefficient of friction is :

$$
\begin{equation*}
\frac{\mathrm{Q}-\mathrm{P}}{\sqrt{4 \mathrm{~W}^{2}-(\mathrm{P}+\mathrm{Q})^{2}}} \tag{10}
\end{equation*}
$$

SECTION-C

9. Write in brief the following :
$10 \times 3=30$
(i) State Varignon's theorem.
(ii) A 120 kg force is resolved into components along AB and AC making angle 45° and α respectively. If the component along AC is of magnitude 120 kg ., determine the angle α and the component along AB.
(iii) State Lami's theorem.
(iv) State $\lambda-\mu$ theorem.
(v) The resolved part of a force 32 kg . wt., in a direction is half of it. Find its inclination with the force and also find the other resolved part.
(vi) A bar AB weighs 10 kg . It is placed horizontally on two smooth pegs, one at A and the other at C. An upward vertical force P is applied at the end B . Show that if $\mathrm{P}=$ 10 kg ., the equilibrium of the bar is not possible.
(vii) ABC is a triangular and G its centroid. Prove that the forces represented completely by GA, GB and GC are in equilibrium.
(viii) State generalized theorem of a resolved parts.
(ix) State laws of limiting friction.
(x) Find Centre of gravity of uniform rod.
