D-3/2111

11775/NJ

Sample Surveys-355

Sem-V

Time - 3hrs

M.M.- 30

Note-: The Candidates are required to attempt two questions from Section A & B Section C will be compulsory

Section A

1. A sample of size *n* is drawn from a population having N units by simple random sampling without replacement. A sub-sample of n_1 units is drawn from the *n* units by simple random sampling without replacement. Let $\overline{y_1}$ denote the mean based on n_1 units and $\overline{y_2}$ be the mean based on $(n - n_1)$ units. Consider the estimator of the population mean $\overline{Y_N}$ given by

$$\overline{y}_w = w \, \overline{y_1} + (1 - w) \overline{y_2}$$

Show that $E(\bar{y}_w) = \overline{Y_N}$ and obtain its variance.

- **2.** A simple random sample of size $n = n_1 + n_2$ with mean $\overline{y_n}$ is drawn from a finite population and a simple random subsample of size n_1 with mean $\overline{y_{n_1}}$ is drawn from it. Show that $V(\overline{y_{n_1}} \overline{y_n}) = \left(\frac{1}{n_1} + \frac{1}{n}\right)S^2$, where S^2 is the population mean square.
- **3.** Discuss the basic principles of sample survey. What are the main steps involved in a sample survey?
- 4. Show that if a random sample of size *n* is drawn without replacement from a finite population of size N with mean Y_N and variance σ^2 ; the covariance between any two numbers of the sample is $\left(-\frac{S^2}{N}\right)$, where S^2 is the population mean square $2 \neq 4 = 8$

Section B

- 5. What are the practical difficulties in adopting Neyman method of allocation?
- 6. Define the term regression estimator with example. Also obtain estimator of population mean.
- 7. In large samples, with simple random sampling, derive the condition under which the ratio estimate has a smaller variance than the estimate $\hat{Y} = N \bar{y}$ obtained by simple expansion.
- Justify the statement: "The efficiency of stratified sampling relative to simple random sampling without replacement depends on the allocation of the sample to the various strata".

Section C

- 9. Write in brief
 - a) What is optimum allocation.
 - b) Explain the principle of sampling
 - c) Prove that the ratio estimator method gives more precise result whenever $\rho > \frac{CV(x)}{2 CV(y)'}$, where *CV* is the coefficient of correlation and ρ is the correlation between *x* and *y*.
 - d) Under what situations you should prefer ratio method?
 - e) Define stratified random sampling.
 - f) Define sampling errors and non-sampling errors.
 - g) What common assumptions are made to obtain the approximate variances of ratio estimator and regression estimator?