Roll No. \qquad

11774/NJ

D-3/2111

COMPUTER ORIENTED

NUMERICAL METHODS

Paper-354

Semester-V

Time Allowed : 3 Hours] [Maximum Marks : 30

Note : The candidates are required to attempt two questions each from Sections A and B carrying 4 marks each and the entire Section C consisting of 7 short answer type questions carrying 2 marks each.

SECTION—A

1. Perform four iterations of the method of iteration to find the positive root between 0 and 1 of the equation $\mathrm{xe}^{\mathrm{x}}=1$.
2. Find a root of the equation $\mathrm{x} \log _{10} \mathrm{x}=1.2$ by Newton - Raphson's method. 4
3. Find the smallest root equation $x^{2}-400 x+1=0$ using four digit arithmetic.
4. Find the root of the equation $x e^{x}=\cos x$ in the interval (0,1) using Regula-Falsi method correct to four decimal places.

SECTION—B

5. Solve the following system by Gauss elimination method :
$2 \mathrm{x}+4 \mathrm{y}+\mathrm{z}=3 ; 3 \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=2 ; \mathrm{x}-\mathrm{y}+\mathrm{z}=6$.

11774/NJ/472/W/710
6. Find the value of $\sin 52^{\circ}$ from the given table using Netwon's forward interpolation formula : 4

x	$:$	45°	50°	55°	60°
$\sin \mathrm{x}$	$:$	0.7071	0.7660	0.8192	0.8660

7. Find the unique polynomial $\mathrm{P}(\mathrm{x})$ of degree 2 such that $\mathrm{P}(1)=1, \mathrm{P}(3)=27, \mathrm{P}(4)=64$ using Lagrange's interpolation method.
8. Prepare a divided difference table for the following Data :

x	$:$	1	3	6	10	11
y	$:$	3	31	223	1011	1343
		SECTION—C				

9. Write short notes on the following : $2 \times 7=14$
(i) Add 0.1234×10^{-3} and 0.5678×10^{-3} using the concept of normalized floating point.
(ii) Derive the iterative formula to find $\mathrm{N}^{1 / \mathrm{k}}$.
(iii) Derive the order of the convergence of the iteration method.
(iv) Write the formula of the Regula-falsi and secant methods.
(v) Define ill-conditioned equation.
(vi) Write the difference between the Gauss Seidel and Gauss elimination method.
(vii) Convert (0.8176$)_{10}$ to binary number system.
