Roll No.

Total Pages : 4

11774/NJ

D-3/2111

COMPUTER ORIENTED

NUMERICAL METHODS

Paper-354

Semester-V

Time Allowed : 3 Hours] [Maximum Marks : 30

Note : The candidates are required to attempt two questions each from Sections A and B carrying 4 marks each and the entire Section C consisting of 7 short answer type questions carrying 2 marks each.

SECTION-A

- 1. Perform four iterations of the method of iteration to find the positive root between 0 and 1 of the equation $xe^x = 1$.
- 2. Find a root of the equation $x \log_{10} x = 1.2$ by Newton – Raphson's method. 4
- 3. Find the smallest root equation $x^2 400x + 1 = 0$ using four digit arithmetic. 4
- 4. Find the root of the equation xe^x = cos x in the interval (0, 1) using Regula-Falsi method correct to four decimal places.

SECTION-B

 Solve the following system by Gauss elimination method :

2x + 4y + z = 3; 3x + 2y - 2z = 2; x - y + z = 6.

11774/NJ/472/W/710 2

11774/NJ/472/W/710

[P. T. O.

- 6. Find the value of sin 52° from the given table using Netwon's forward interpolation formula : 4
 x : 45° 50° 55° 60° sin x : 0.7071 0.7660 0.8192 0.8660
- 7. Find the unique polynomial P(x) of degree 2 such that P(1) = 1, P(3) = 27, P(4) = 64 using Lagrange's interpolation method. 4
- 8. Prepare a divided difference table for the following Data : 4

х	:	1	3	6	10	11
У	:	3	31	223	1011	1343

SECTION-C

- 9. Write short notes on the following : $2 \times 7 = 14$
 - (i) Add 0.1234×10^{-3} and 0.5678×10^{-3} using the concept of normalized floating point.
- **11774/NJ/**472/W/**710** 3 [P. T. O.

- (ii) Derive the iterative formula to find $N^{1/k}$.
- (iii) Derive the order of the convergence of the iteration method.
- (iv) Write the formula of the Regula-falsi and secant methods.
- (v) Define ill-conditioned equation.
- (vi) Write the difference between the Gauss Seidel and Gauss elimination method.
- (vii) Convert $(0.8176)_{10}$ to binary number system.