Total Pages : 3

PC-11761/NJ

D-6/2111

ADVANCED CALCULUS-231

Semester-III

Time: Three Hours]
[Maximum Marks : 45

Note : Attempt two questions each from Section-A and B. Section-C will be compulsory.

SECTION - A

I. Prove that the countable union of countable sets is countable.
II. (a) Find the supremum and infimum of the set

$$
\mathrm{S}=\left\{\pi+\frac{1}{2}, \pi+\frac{1}{4}, \pi+\frac{1}{8}, \ldots \ldots \ldots\right\} .
$$

(b) Show that the sequence

$$
\mathrm{F}_{n}=1+\frac{1}{3}+\frac{1}{5}+\ldots \ldots \ldots+\frac{1}{2 n-1}
$$

is not a Cauchy sequence. Is it convergent.
III. Prove that a bounded sequence $\left\langle\mathrm{F}_{n}\right\rangle$ converges to l if and only if

$$
\operatorname{lt}_{n \rightarrow \infty} \sup \mathrm{~F}_{n}=\operatorname{lt}_{n \rightarrow \infty} \inf \mathrm{~F}_{n}=1
$$

IV. Examine the convergence of the series :

$$
\sum_{n=1}^{\infty} \frac{2.4 .6 \ldots . .2 n}{1.3 .5 \ldots \ldots .(2 n+1)}
$$

SECTION - B

V. Show that $\sum(-1)^{n} \frac{n+2}{2^{n}+5} \cos n x$ is convergent for all real values of x.
VI. Let f be a function defined on $(0,1)$ by

$$
f(x)= \begin{cases}0, & \text { if } x \text { is irrational } \\ 1 / q, & \text { if } x=p / q\end{cases}
$$

where p and q are positive integers having no common factor. Prove that f is continuous at each irrational point and discontinuous at each rational point.
VII. Find the maximum value of the function

$$
f(x)=x^{2} e^{-x}, x>0
$$

VIII. (a) Test if Lagrange's mean value theorem holds for the function $f(x)=|x|$ in the interval $[-1,1]$.
(b) Show that $f(x)=x \tan ^{-1}\left(y_{x}\right)$ for $x \neq 0$ and $f(0)=0$ is not differentiable at $x=0$.
$(2 \times 6=12)$

SECTION - C

IX. (a) Find $\operatorname{lt}_{n \rightarrow \infty} \frac{\sin n \pi}{n}$.
(b) Let $a_{1}=1, a_{n+1}=\sqrt{7 a_{n}}, n \geq 1$. Find $\lim _{n \rightarrow \infty} a_{n}$.
(c) Show that the series $\sum_{n=1}^{\infty} \cos \left(1 / n^{2}\right)$ is not convergent.
(d) Let $a_{k}, b_{k} \in \mathrm{R}$ such that $\left|a_{k}\right| \leq b_{k} \forall k \in \mathbb{N}$ if $\sum b_{k}$ is convergent, then show that $\sum_{k} a_{k}$ is absolutely convergent.
(e) Show that $f(x)=x^{2}$ is uniformly continuous in $[0,1]$.
(f) Check for the differentiability of the function

$$
f(x)=|x+2| \text { at } x=-2
$$

(g) Derive the expansion of $\cos x$ in terms of power series.

