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CS/2111
MATHEMATICAL METHODS–I, Paper–III, Opt. (i)

Semester—V

Time Allowed : Three Hours] [Maximum Marks : 40

Note :– The candidates are required to attempt two questions each from
Sections A and B. Section C will be compulsory.

SECTION—A

I. State and prove Riemann-Lebesgue Theorem of Fourier series.
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II. (a) Obtain the Fourier series expansion of function

xcos1)x(f   in (– ). 3

(b) Express the following function as half range cosine series
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III. (a) Find the complex form of the Fourier series of the function












2x1   ; 0

1x2; 2
)x(f 3



(b) Find the Fourier series of the function
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IV. State Parceval’s identity of Fourier series and use it for the

function f(x) = x2 in (–) to prove ...  ...  ...  ...  
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SECTION—B

V. State and prove second shifting property of Laplace transforms.
Hence evaluate  L{g(t)} where

g(t) = 
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VI. (a) By use of Laplace Transforms, prove that 
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(b) Evaluate } tsin {l  and hence evaluate 
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VII. State convolution theorem and use it to evaluate
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VIII. State Heaviside’s Expansion formula and use it to evaluate
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SECTION—C

IX. (a) Find the Fourier series of function f(x) = x in [–, ].

(b) If f is a bounded and integrable function defined in [–],
then prove that Fourier coefficients an and bn of f tends to
zero as n  .

(c) Define half range cosine series.

(d) State Dirichlet’s conditions for Fourier expansion of functions.

(e) Evaluate 
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(f) Evaluate 
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(g) Evaluate 
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(h) Evaluate L{t2 sin at}. 8×2=16
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