CS/2111
 MATHEMATICAL METHODS-I, Paper-III, Opt. (i)
 Semester-V

Time Allowed: Three Hours]
[Maximum Marks : 40
Note :- The candidates are required to attempt two questions each from Sections A and B. Section C will be compulsory.

SECTION-A

I. State and prove Riemann-Lebesgue Theorem of Fourier series.
II. (a) Obtain the Fourier series expansion of function

$$
f(x)=\sqrt{1-\cos x} \text { in }(-\pi, \pi)
$$

(b) Express the following function as half range cosine series

$$
f(x)=\left\{\begin{align*}
x ; & 0<x<\frac{\pi}{2} \tag{3}\\
\pi-x ; & \frac{\pi}{2}<x<\pi
\end{align*}\right.
$$

III. (a) Find the complex form of the Fourier series of the function

$$
f(x)=\left\{\begin{array}{rr}
2 ; & -2 \leq x \leq 1 \tag{3}\\
0 ; & 1 \leq x \leq 2
\end{array}\right.
$$

(b) Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{rc}
-\cos x ; & -\pi<x<0 \tag{3}\\
\cos x ; & 0<x<\pi
\end{array}\right.
$$

IV. State Parceval's identity of Fourier series and use it for the function $f(x)=x^{2}$ in $(-\pi, \pi)$ to prove $\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+$ \qquad

SECTION—B

V. State and prove second shifting property of Laplace transforms. Hence evaluate $\mathrm{L}\{\mathrm{g}(\mathrm{t})\}$ where
$g(t)=\left\{\begin{array}{rcc}0 & \text { if } & 0<t<\frac{1}{2} \\ t+\frac{3}{2} & \text { if } & t>\frac{1}{2}\end{array}\right.$
VI. (a) By use of Laplace Transforms, prove that $\int_{0}^{\infty} \sin x^{2} d x=\sqrt{\frac{\pi}{8}}$. 3
(b) Evaluate $l\{\sin \sqrt{\mathrm{t}}\}$ and hence evaluate $\mathrm{L}\left\{\frac{\cos \sqrt{\mathrm{t}}}{\sqrt{\mathrm{t}}}\right\}$. 3
VII. State convolution theorem and use it to evaluate
$\mathrm{L}^{-1}\left\{\frac{5 \mathrm{~s}+3}{(\mathrm{~s}-1)\left(\mathrm{s}^{2}+2 \mathrm{~s}+5\right)}\right\}$.
VIII. State Heaviside's Expansion formula and use it to evaluate
$\mathrm{L}^{-1}\left\{\frac{1}{\left(\mathrm{~s}^{3}-1\right)}\right\}$.

SECTION——C

IX. (a) Find the Fourier series of function $f(x)=x$ in $[-\pi, \pi]$.
(b) If f is a bounded and integrable function defined in $[-\pi, \pi]$, then prove that Fourier coefficients a_{n} and b_{n} of f tends to zero as $\mathrm{n} \rightarrow \infty$.
(c) Define half range cosine series.
(d) State Dirichlet's conditions for Fourier expansion of functions.
(e) Evaluate $L^{-1}\left\{\frac{2 s-1}{s^{3}-s}\right\}$.
(f) Evaluate $L^{-1}\left\{\frac{\mathrm{e}^{-6 \mathrm{~s}+1}}{(\mathrm{~s}-3)^{5}}\right\}$.
(g) Evaluate $L\left\{\int_{0}^{t} z^{2} e^{-2 z} d z\right\}$.
(h) Evaluate $L\left\{t^{2} \sin a t\right\}$.

