CS/2111 ALGEBRA-I
 Paper-I
 Semester-V

Time Allowed : Three Hours]
[Maximum Marks : 40

Note :- The candidates are required to attempt two questions each from Sections A and B. Section C will be compulsory.

SECTION—A

I. (a) Show that the set of all positive Rational Numbers form an infinite abelian group under composition defined as
$\mathrm{a} \quad \mathrm{b}=\frac{\mathrm{ab}}{3}$.
(b) If in a group $G, \mathrm{a}^{5}=\mathrm{e}$ and $\mathrm{aba}^{-1}=\mathrm{b}^{2}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. Prove that if $\mathrm{b} \neq \mathrm{e}$. Then prove that $\mathrm{O}(\mathrm{b})=31$.
II. Prove that a subgroup of a cyclic group is cyclic.
III. (a) If G and G^{\prime} are two groups and f is an isomorphism from G into G^{\prime}, then

Prove that $\mathrm{O}(\mathrm{a})=\mathrm{O}(\mathrm{f}(\mathrm{a}))$ for all $\mathrm{a} \in \mathrm{G}$.
(b) Let H be a subgroup of a Group G , then prove that G is equal to the union of all right cosets of H in G .
IV. State and prove Fundamental Theorem of Group Homomorphism.

SECTION-B

V. Let I and J be two ideals of Ring R , then prove that $\mathrm{I}+\mathrm{J}$ is the smallest ideal of R containing $\mathrm{I} \cup \mathrm{J}$.
VI. Let I and J be two ideals of a ring R. Then show that $\mathrm{I} /(\mathrm{I} \cap \mathrm{J}) \cong(\mathrm{I}+\mathrm{J}) / \mathrm{J}$.
VII. Prove that every Euclidean domain i.e. E.D. is principal ideal domain i.e. P.I.D.
VIII. Prove that the set of rational numbers Q is a ring under the compositions $\mathrm{a} \odot \mathrm{b}=\mathrm{a}+\mathrm{b}-1$ and $\mathrm{a} \oplus \mathrm{b}=\mathrm{a}+\mathrm{b}-\mathrm{ab} \forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}$. 6

SECTION-C

IX. (a) Let G be group of integers under addition and $\mathrm{G}^{\prime}=\{-1,1\}$ be group under multiplication. Define a mapping $f: G \rightarrow G^{\prime}$
as $f(x)=\left\{\begin{array}{rc}1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{array}\right.$
Then prove that f is a Homomorphism.
(b) Let G be a group then prove that $(\mathrm{ab})^{-1}=\mathrm{b}^{-1} \mathrm{a}^{-1}$ for all $a, b \in G$.
(c) Prove that an infinite cyclic group has precisely two generators.
(d) If H is a subgroup of a group G such that $[\mathrm{G}: \mathrm{H}]=2$, then prove that H is normal Subgroup of G .
(e) If R is a ring in which $a^{2}=a$ for all $a \in R$, Then prove that R is a commutative Ring of characteristic 2 .
(f) Let R and S be two rings. Then a Homomorphism $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ is one-one if and only if $\operatorname{Ker} \mathrm{f}=\{0\}$.
(g) Find Quotient Field of $Z[\sqrt{2}]$, where $Z[\sqrt{2}]=\{a+\sqrt{2} b ; a, b \in Z\}$.
(h) If $\mathrm{I}=\{6 \mathrm{n} ; \mathrm{n} \in \mathrm{Z}\}$ be an ideal of ring Z of integers, write the composition Tables for quotient ring Z/I. $\quad 8 \times 2=16$

