SECTION-C

IX. (a) Solve graphically :

Minimize $Z=2500 x_{1}+3500 x_{2}$
Subject to constraints

$$
\begin{aligned}
& 50 x_{1}+60 x_{2} \geq 2500 \\
& 100 x_{1}+60 x_{2} \geq 3000 \\
& 100 x_{1}+200 x_{2} \geq 7000
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
(b) Give short note on infeasible solution.
(c) What do you mean by basic feasible solution of LPP ?
(d) What do you mean by standard form of a LPP ?
(e) Find the initial basic feasible solution of the following transportation problem by Matrix Minima method :

| Factory \downarrow Warehouse \rightarrow | W_{1} | $\mathrm{~W}_{2}$ | $\mathrm{~W}_{3}$ | $\mathrm{~W}_{4}$ | Capacity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F_{1} | 19 | 30 | 50 | 10 | 7 |
| $\mathrm{~F}_{2}$ | 70 | 30 | 40 | 60 | 9 |
| $\mathrm{~F}_{3}$ | 40 | 8 | 70 | 20 | 18 |
| Requirement | 5 | 8 | 7 | 14 | Total $=34$ |

(f) Write a short note on North-West method for finding initial Basic Feasible Solution of Transportation Problem.
(g) Write a short note on assignment problems with restriction.
(h) Are assignment problems special case of transportation problems ? Comment.
$8 \times 2=16$
III. Prove that there is one-one correspondence between Basic Feasible Solutions and Extreme Points of set of feasible solutions of Linear Programming Problem.
IV. Show the following LPP has multiple optimal solutions :

Maximize $Z=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Subject to constraints

$$
\begin{aligned}
& 6 x_{1}+9 x_{2} \leq 100 \\
& 2 x_{2}+5 x_{3} \leq 18 \\
& 2 x_{1}+x_{2} \leq 20
\end{aligned}
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Hence find all the optimal solutions.

SECTION—B

V. Solve the following transportation problem to minimize the total cost. Here the cell entries represent unit costs :

Factory \downarrow Warehouse \rightarrow	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	$\mathrm{~W}_{5}$	Capacity
F_{1}	4	3	1	2	6	40
$\mathrm{~F}_{2}$	5	2	3	4	5	30
$\mathrm{~F}_{3}$	3	5	6	3	2	20
$\mathrm{~F}_{4}$	2	4	4	5	3	10
Requirement	30	30	15	20	5	Total $=100$

VI. Solve the following Assignment Problem for maximizing the total output:

		Jobs			
		I	II	III	IV
	A	42	35	28	21
	B	30	25	20	15
	C	30	25	20	15
	C	30	24	20	16

VII. A company has four machines to do three jobs. Each job can be assigned to one and only one machine. The cost of each job for each machine is given in the following table :

Jobs	Machines			
	W	X	Y	Z
A	18	24	28	32
B	8	13	17	19
C	10	15	19	22

What are the job assignments which will minimize the cost ?
VIII. A company has four factories $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}, \mathrm{~F}_{4}$ manufacturing the same product. Production and raw material costs differ from factory to factory and are given in the following table in the first two rows. The transportation costs from factories to the sale depots S_{1}, S_{2}, S_{3} are also given. The last two columns in the table give price and the total requirement at each depot. The production capacity of each factory is given in the last row.

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	Demand	Sales price/unit		
Total Production cost/unit	25	27	26	22				
$\mathrm{~S}_{1}$	3	9	5	4	80	34		
$\mathrm{~S}_{2}$	1	7	4	5	120	32		
$\mathrm{~S}_{3}$	5	8	3	6	150	31		
Production capacity	10	150	50	100				

Determine the most profitable distribution schedule and the corresponding profit.
The surplus production should be taken to yield zero profit. 6
[P.T.O.

