BS/2111
 ANALYSIS-I
 Semester-III

Time Allowed: Three Hours]
[Maximum Marks : 40
Note :- The candidates are required to attempt two questions each from Sections A and B. Section C will be compulsory.

SECTION-A

I. State and prove Cauchy's first theorem on limits. Does the converse hold ? Justify.
II. (a) If $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots+\frac{1}{n}-\log n$, then prove that $\left\{a_{n}\right\}$ is convergent sequence.
(b) Using concept of sequential continuity, show that the function

$$
f(x)=\left\{\begin{array}{rc}
x, & \text { if } x \text { is rational } \\
-x, & \text { if } x \text { is irrational }
\end{array}\right.
$$

is continuous only at $\mathrm{x}=0$.
III. (a) Show that the series $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots \ldots$. is convergent for $-1<\mathrm{x} \leq 1$. 3
(b) Show that for the series :
$\frac{1}{3}+\frac{1}{5}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{3}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots$, Cauchy's root
Test indicates convergence but D'Alembert's ratio test is inconclusive.
IV. (a) Apply Weirstrass's M-Test to show that the series $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{x}}{\left(\mathrm{n}+\mathrm{x}^{2}\right)^{2}}$ is uniformly convergent $\forall \mathrm{x} \in \mathrm{R}$. 3
(b) For the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=r$, r may be finite or infinite, then the radius of convergence R
is given by $\mathrm{R}=\frac{1}{\mathrm{r}}$.

SECTION-B

V. Prove that the lower Riemann-integral cannot exceed the upper Riemann-integral i.e. $\int_{a}^{b} f d x \leq \int_{a}^{\bar{b}} f d x$. 6
VI. Prove that every continuous function defined on a closed interval is Riemann-integrable.
VII. (a) Find the lower and upper Riemann sums for the function
$f(x)=\left\{\begin{array}{lc}0 & \text { when } x \text { is rational } \\ 1 & \text { when } x \text { is irrational }\end{array}\right.$
on $[-1,1]$ by dividing it into n equal sub-intervals.
(b) Show that $\int_{1}^{2} \frac{\sqrt{x}}{\log x} d x$ is divergent.
VIII. Prove that the improper integral $\int_{0}^{\infty} x^{n-1} e^{-x} d x$ is convergent if and only if $n>0$.

6

SECTION—C

IX. (a) State Cauchy's general principle of convergence for sequences.
(b) If $\sum_{n=1}^{\infty} a_{n}$ is convergent series, then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) Prove that sequence $\left\{a_{n}\right\}$ where $a_{n}=\frac{1}{n}$ is Cauchy sequence.
(d) Define Subsequence.
(e) Define norm of a partition of closed interval.
(f) Define Riemann integrable function.
(g) State Abel's test for convergence of improper integrals.
(h) Prove that improper integral $\int_{1}^{\infty} \frac{\sin x}{x} d x$ is convergent.

