- 6. Derive Laplace's equation. Show that the function $\phi = x^2 y^2 + z$ satisfies Laplace's equation.
- 7. What is electric image? Find the potential energy of point charge placed near conducting sheet at zero potential.
- 8. Prove that the line integral of the electric field between two points is path independent.

SECTION—C

- 9. Attempt any five:
 - (a) What is solenoidal field? Give one example.
 - (b) What is the change in V if displacement is perpendicular to ∇V
 - (c) What is the direction of electric field due to uniformly charged infinite wire?
 - (d) What si the significance of negative sign in the equation $\vec{E} = -\vec{\nabla}V$?
 - (e) Can we apply Coulomb's law to measure charge in motion? Explain.
 - (f) Show that the electric field $\vec{E} = 6xy\hat{i} + (3x^2 3y^2)\hat{j}$ is conservative.
 - (g) Given $V = x^2 + y^2 + z^2 + z^2x^2$. Find $\vec{\nabla}V$ at a point P(2, 3, 4). $5\times 2=10$

Roll No.

Total No. of Pages: 2

PC 11443-NH

AS/2111 ELECTRICITY AND MAGNETISM—I, Paper—C Semester—I

Time Allowed : Three Hours] [Maximum Marks : 30

Note :— The candidates are required to attempt *two* questions each from Sections A and B. Section C will be compulsory. (Attempt any *five* questions from Section C)

SECTION—A

- 1. State and prove Green's theorem.
- 2. Using Gauss's law, derive an expression for electric field due to an infinite line charge.
- 3. (a) Given a vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\vec{\nabla} \left(\frac{1}{r^3}\right) = -3\frac{\vec{r}}{r^5}$.
 - (b) Prove that divergence of curl \vec{A} or $\vec{\nabla} \cdot \vec{\nabla} \times \vec{A} = 0$.
- 4. Derive an expression for electric field due to uniformly charged wire of length ℓ at a point on its perpendicular bisector. 5

SECTION—B

5. Derive an expression for the potential at a point due to continuous charged distribution. On the basis of result derived, explain the terms monopole moment, dipole moment and quadrupole moment.

5