SECTION—B

- 5. What are Galilean Transformations? Show that the laws of conservation of energy and momentum are invariant under Galilean Transformations.5
- 6. Derive an expression for effective force acting on a particle in uniformly rotating frame of reference.
- 7. Prove that the rotational invariance of space leads to conservation of angular momentum. 5
- 8. Show that two particles of equal mass move at right angles to each other after the elastic collision in lab system. 5

SECTION—C

- 9. Attempt any *five* questions:
 - (a) What is the difference between inertial and non-inertial frames of reference ?
 - (b) What is Coriolis force? Explain its importance.
 - (c) What is impact parameter and discuss its significance?
 - (d) What does translational and rotational invariance of space imply?
 - (e) What are the dimensions of the quantity $L^2/\mu r^2$?
 - (f) Prove that the magnitude of velocity in spherical polar coordinates is given by $\vec{v} = \vec{r}\vec{r} + r\dot{\theta}\hat{\theta} + r\dot{\phi}\sin\theta\hat{\phi}$ where, symbols have their usual meaning.
 - (g) When a particle moves under a central force, prove that its angular momentum is conserved. $5\times2=10$

Roll No.

Total No. of Pages: 2

PC 11441-NH

AS/2111 MECHANICS—I Paper—A Semester—I

Time Allowed: 3 Hours

[Maximum Marks : 30

Note:— The candidates are required to attempt *two* questions each from Sections A and B. Section C will be compulsory. Attempt any *five* from Section C.

SECTION—A

- How can a system of two bodies interacting through a gravitational force be reduced to a one-body problem? What would be the corresponding expressions for angular momentum and kinetic energy?
- 2. What are Cartesian and spherical polar coordinates? How are the coordinates of a point in two systems related to each other?
- 3. (a) Write down Kepler's law of planetary motion. Prove Kepler's second law of motion.
 - (b) If the average distance of mass from the sun is 1.52 times that of the earth from the sun. Find the period of revolution of mass around the sun.
- 4. Derive an expression for differential equation of orbit of particle moving under a central force.