AS/2111 DIFFERENTIAL EQUATIONS-II
 Semester-I

Time Allowed : Three Hours]
[Maximum Marks : 40
Note :- The candidates are required to attempt two questions each from Sections A and B. Section C will be compulsory.

SECTION—A

I. (a) Solve $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.
(b) Solve the differential equation $\frac{d y}{d x}+y \cos x=y^{2} \sin 2 x$.
II. Solve $\left(D^{2}-1\right) y=x^{2} \cos x$.
III. (a) Solve by method of variation of parameters the differential

$$
\text { equation } \frac{d^{2} y}{d x^{2}}+9 y=\sin 3 x
$$

(b) Solve the following differential equation :

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}+2 \mathrm{y}+1}{2 \mathrm{x}+4 \mathrm{y}+3} .
$$

IV. (a) Show that the following functions are linearly independent yet their Wronskian vanishes on the given interval :

$$
f_{1}=\left\{\begin{array}{cl}
x^{2}, & x \geq 0 \tag{3}\\
0, & x<0
\end{array} \quad f_{2}=\left\{\begin{array}{cc}
0, & x \geq 0 \\
x^{2}, & x<0
\end{array}\right.\right.
$$

(b) Prove that $\frac{1}{D-a} V=e^{a x} \int V e^{-a x} d x$, no arbitrary constant being added.

SECTION—B

V. (a) Solve the System by Using Operator Method :

$$
\begin{equation*}
2 \frac{\mathrm{dx}}{\mathrm{dt}}-2 \frac{\mathrm{dy}}{\mathrm{dt}}-3 \mathrm{x}=\mathrm{t} \text { and } 2 \frac{\mathrm{dx}}{\mathrm{dt}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}+3 \mathrm{x}+8 \mathrm{y}=2 \tag{3}
\end{equation*}
$$

(b) Solve the following differential equation :

$$
x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+8 y=65 \sin (\log x)
$$

VI. Solve in series the Bessel's equation of zero order :
$x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$.
VII. Prove that if $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$ if $m \neq n$.
VIII. (a) Prove that :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{~J}_{\mathrm{n}}^{2}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}^{2}(\mathrm{x})\right]=2\left[\frac{\mathrm{n}}{\mathrm{x}} \mathrm{~J}_{\mathrm{n}}^{2}(\mathrm{x})-\frac{\mathrm{n}+1}{\mathrm{x}} \mathrm{~J}_{\mathrm{n}+1}^{2}(\mathrm{x})\right] \tag{3}
\end{equation*}
$$

(b) For integral values of n, show that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.

SECTION-C

IX. (a) Show by Wronskian that the following functions are linearly independent

$$
x, x^{3}, x^{4} \text { are linearly independent if } x \neq 0
$$

(b) Find the order and degree of the differential equation

$$
y=x \frac{d y}{d x}+a\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{5}{2}}
$$

(c) Solve the differential equation $D^{2} y=e^{x} \cos x$.
(d) Define exact differential equation by giving one example.
(e) Show that $\mathrm{P}_{\mathrm{n}}(1)=1$.
(f) Show that $y=x^{n} J_{n}(x)$ is a solution of

$$
x \frac{d^{2} y}{d x^{2}}+(1-2 n) \frac{d y}{d x}+x y=0
$$

(g) Solve the differential equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x$.
(h) State Rodrigues' Formula.

