Total No. of Pages : 3

PC 11435-NH

AS/2111 DIFFERENTIAL EQUATIONS—II Semester—I

Time Allowed : Three Hours] [Maximum Marks : 40

Note :- The candidates are required to attempt *two* questions each from Sections A and B. Section C will be compulsory.

SECTION-A

I. (a) Solve
$$y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0.$$
 3

(b) Solve the differential equation
$$\frac{dy}{dx} + y \cos x = y^2 \sin 2x$$
.

II. Solve $(D^2 - 1)y = x^2 \cos x$. 6

III. (a) Solve by method of variation of parameters the differential

equation
$$\frac{d^2y}{dx^2} + 9y = \sin 3x.$$
 3

(b) Solve the following differential equation :

$$\frac{dy}{dx} = \frac{x + 2y + 1}{2x + 4y + 3}.$$
3

IV. (a) Show that the following functions are linearly independent yet their Wronskian vanishes on the given interval :

$$f_1 = \begin{cases} x^2, & x \ge 0 \\ 0, & x < 0 \end{cases}, \quad f_2 = \begin{cases} 0, & x \ge 0 \\ x^2, & x < 0 \end{cases}$$

(b) Prove that $\frac{1}{D-a}V = e^{ax}\int Ve^{-ax} dx$, no arbitrary constant being added.

SECTION—B

V. (a) Solve the System by Using Operator Method :

$$2\frac{dx}{dt} - 2\frac{dy}{dt} - 3x = t$$
 and $2\frac{dx}{dt} + 2\frac{dy}{dt} + 3x + 8y = 2$. 3

(b) Solve the following differential equation :

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 8y = 65 \sin(\log x).$$
 3

VI. Solve in series the Bessel's equation of zero order :

$$x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} + xy = 0.$$
 6

VII. Prove that if
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$
 if $m \neq n$. 6

VIII. (a) Prove that :

$$\frac{d}{dx} \left[J_n^2(x) + J_{n+1}^2(x) \right] = 2 \left[\frac{n}{x} J_n^2(x) - \frac{n+1}{x} J_{n+1}^2(x) \right].$$
 3

3

(b) For integral values of n, show that $J_{-n}(x) = (-1)^n J_n(x)$.

11435-NH/AS/6310/YC-9280 2

SECTION-C

IX. (a) Show by Wronskian that the following functions are linearly independent

x, x^3 , x^4 are linearly independent if $x \neq 0$.

(b) Find the order and degree of the differential equation

$$y = x \frac{dy}{dx} + a \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{5}{2}}.$$

- (c) Solve the differential equation $D^2y = e^x \cos x$.
- (d) Define exact differential equation by giving one example.
- (e) Show that $P_n(1) = 1$.
- (f) Show that $y = x^n J_n(x)$ is a solution of

$$x \frac{d^2 y}{dx^2} + (1-2n)\frac{dy}{dx} + xy = 0.$$

(g) Solve the differential equation
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} = x$$
.

(h) State Rodrigues' Formula. $8 \times 2=16$

11435-NH/AS/6310/YC-9280 3