AS/2111 CALCULUS-I
 Semester-I

Time Allowed : Three Hours]
[Maximum Marks : 40
Note :- The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of eight short answer type questions carrying 2 marks each.

SECTION—A

I. (a) Show that the function $(x)=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$, where $x \neq 0$ and $\mathrm{f}(0)=0$ is discontinuous at $\mathrm{x}=0$.
(b) If $(x)=a x^{3}+3 b x^{2}$, determine a and b so that the graph of f has a point of inflexion at $(-1,2)$.
II. State Leibnitz Theorem and Prove that
$\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+n^{2} y_{n}=0$, if $y=\log \left(x+\sqrt{x^{2}+1}\right)$.

Also find $y_{n}(0)$.
III. (a) Find the equation of the hyperbola having $x+y-1=0$ and $\mathrm{x}-\mathrm{y}+2=0$ as its asymptotes and passing through origin.

3
(b) Examine the following curve for concavity, convexity and points of inflexion

$$
y=x^{3}+3 x^{2}-24 x+20
$$

IV. Trace curve $\mathrm{y}=\mathrm{x}^{3}$.

SECTION-B

V. (a) Discuss the continuity of the following function at (0,0)

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \tag{4}\\
0, & (x, y)=(0,0)
\end{array}\right.
$$

(b) If $\mathrm{zk}=\sin ^{-1}\left(\frac{\mathrm{x}+\mathrm{y}}{\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}}\right)$, Using Euler's theorem on homogenous function, prove that
$x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=\frac{1}{2} \tan z$.
VI. If $f(x, y)$ is a real valued function with domain $D f \subseteq R^{2}$ s.t. f_{y} exists in a neighbourhood of $(a, b) \in D f$ and if $f_{x y}$ is continuous at (a, b) then $f_{y x}(a, b)$ exists and $f_{x y}(a, b)=f_{y x}(a, b)$. 6
VII. (a) Obtain Taylor's expansion for $f(x, y)=e^{x y}$ at $(1,1)$ upto third term.
(b) By Using Definition, Prove that $\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+2 y\right)=3$.

