PC 11434-NH

AS/2111 CALCULUS—I Semester—I

Time Allowed : Three Hours] [Maximum Marks : 40

Note :- The candidates are required to attempt *two* questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of *eight* short answer type questions carrying 2 marks each.

SECTION-A

I. (a) Show that the function
$$(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$$
, where $x \neq 0$ and

- f(0) = 0 is discontinuous at x = 0. 3
- (b) If (x) = ax³ + 3bx², determine a and b so that the graph of f has a point of inflexion at (-1, 2).
- II. State Leibnitz Theorem and Prove that

$$(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0$$
, if $y = \log(x + \sqrt{x^2 + 1})$.
Also find $y_n(0)$.

- III. (a) Find the equation of the hyperbola having x + y 1 = 0and x - y + 2 = 0 as its asymptotes and passing through origin. 3
 - (b) Examine the following curve for concavity, convexity and points of inflexion

$$y = x^3 + 3x^2 - 24x + 20.$$
 3

IV. Trace curve $y = x^3$. 6

SECTION-B

V. (a) Discuss the continuity of the following function at (0, 0)

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
4

(b) If
$$zk = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, Using Euler's theorem on homogenous

function, prove that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{1}{2}\tan z.$$

- VI. If f(x, y) is a real valued function with domain $Df \subseteq R^2$ s.t. f_y exists in a neighbourhood of $(a, b) \in Df$ and if f_{xy} is continuous at (a, b) then $f_{yx}(a,b)$ exists and $f_{xy}(a, b) = f_{yx}(a, b)$. 6
- VII. (a) Obtain Taylor's expansion for $f(x, y) = e^{xy}$ at (1, 1) upto third term. 3

(b) By Using Definition, Prove that
$$\lim_{(x, y)\to(1, 1)} (x^2 + 2y) = 3$$
.

3

VIII. Find the Maximum and Minimum value of $x^2 + y^2$ subject to the condition $3x^2 + 4xy + 6y^2 = 140$. 6

SECTION—C

IX. (a) Using definition of limit, prove that $\lim_{x\to 2} (4x-5) = 3$.

(b) If
$$y = \sin^{-1} x$$
, show that $(1-x^2)\frac{dy^2}{dx^2} - x\frac{dy}{dx} = 0$.

- (c) Find point of inflexion on the graph for function $y = x^4$.
- (d) State Euler's theorem in homogenous function of two variables.

(e) Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 be defined by

$$f(x, y) = \begin{cases} 1, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$$

show that the first order partial derivatives of f at (0, 0) do not exist.

- (f) Show that the asymptotes of the curve $x^2y^2 = a(x^2 + y^2)$ form a square of side 2a.
- (g) State Young's Theorem.
- (h) Show that $\lim_{x \to 1} \frac{1}{x-1}$ does not exist. $8 \times 2 = 16$

11434-NH/AS/6310/YC-9279 3

11434-NH/AS/6310/YC-9279 2