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PC 11434-NH

AS/2111
CALCULUS—I

Semester—I

Time Allowed : Three Hours] [Maximum Marks : 40

Note :– The candidates are required to attempt two questions each
from Sections A and B carrying 6 marks each and the entire
Section C consisting of eight short answer type questions
carrying 2 marks each.

SECTION—A

I. (a) Show that the function 
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f(0) = 0 is discontinuous at x = 0. 3

(b) If (x) = ax3 + 3bx2, determine a and b so that the graph of
f has a point of inflexion at (–1, 2). 3

II. State Leibnitz Theorem and Prove that

(1 + x2)yn + 2 + (2n + 1)xyn + 1 + n2yn = 0, if )1xxlog(y 2  .

Also find yn(0). 6



III. (a) Find the equation of the hyperbola having x + y – 1 = 0
and x – y + 2 = 0 as its asymptotes and passing through
origin. 3

(b) Examine the following curve for concavity, convexity and
points of inflexion

y = x3 + 3x2 – 24x + 20. 3

IV. Trace curve y = x3. 6

SECTION—B

V. (a) Discuss the continuity of the following function at (0, 0)
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VI. If f(x, y) is a real valued function with domain Df   R2 s.t. fy

exists in a neighbourhood of (a, b)  Df and if fxy is continuous

at (a, b) then fyx(a,b) exists and fxy(a, b) = fyx(a, b). 6

VII. (a) Obtain Taylor’s expansion for f(x, y) = exy at (1, 1) upto
third term. 3

(b) By Using Definition, Prove that .3)y2x(lim 2
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VIII. Find the Maximum and Minimum value of x2 + y2 subject to the
condition 3x2 + 4xy + 6y2 = 140. 6

SECTION—C

IX. (a) Using definition of limit, prove that .3)5x4(lim
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(b) If y = sin–1 x, show that .0
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(c) Find point of inflexion on the graph for function y = x4.

(d) State Euler’s theorem in homogenous function of two variables.

(e) Let f : R2  R be defined by
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show that the first order partial derivatives of f at (0, 0) do
not exist.

(f) Show that the asymptotes of the curve x2y2 = a(x2 + y2) form
a square of side 2a.

(g) State Young’s Theorem.

(h) Show that 
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 does not exist. 8×2=16
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