Roll No.

SECTION-A 13722/NH (a) Find the number of integers between 1 and 1. 10000 inclusive that are not divisible by 4, 5, **C-2111** 7 or 10. (b) Give a Grammar generating the language L **DISCRETE MATHEMATICS-I** in which every sentence is a string of equal Paper-II number of a's and b's. Semester-V (a) How many different automobiles license 2.plates made up of two letters followed by [Maximum Marks : 40 Time Allowed : 3 Hours] four digits are there ? (b) In how many ways can two adjacent squares Note : The candidates are required to attempt two be selected from an 8×8 chess board ? questions each from Sections A and B 3. Let (\mathbf{P}, \leq) be a partially set. Suppose the carrying 6 marks each and the entire length of the longest chain in P is n. Then the Section C consisting of 8 short answer type elements in P can be partitioned into n disjoint questions carrying 2 marks each. antichains. $\mathbf{2}$

Total Pages : 7

13722/NH/1/W/6,910

[P. T. O.

13722/NH/1/W/6,910

6

3

3

3

3

		SECTION-B
		multiple of 3}. 3
		$L = \{x : x \in \{a, b\}, number of a's in x is a$
	(b)	Construct a grammar for the language
		is an equivalence relation. 3
		exists be in A such that (a, b) is in R, then R
		a set A. Show that if for every a in A, there
4.	(a)	Let R be symmetric and transitive relation on

- (a) First, prove that any two multigraphs G of 5. order 3 with degree sequence (4, 4, 4) are isomorphic. Then :
 - (i) Determine all the non-isomorphic induced

subgraphs of G.

subgraphs of G. (iii) Determine non-isomorphic all the subgraphs of order 3 of G. (b) A connected graph of order $n \ge 3$ with a bridge does not have a Hamilton cycle. (a) A multigraph is bipartite if and only if each of 6. its cycles has even length. (b) If T is a binary tree of height h and order p, then $(h+1) \le p \le 2^{(h+1)} - 1$. Write a regular grammar for the language L 7. over the alphabet {a, b}, where L is the set of

(ii) Determine all the non-isomorphic spanning

3

3

3

3

13722/NH/1/W/6,910 3 [P. T. O.

13722/NH/1/W/6,910 4

	all strings with exactly two b's. Draw a finite-			
	state machine to recognize this language. Have			
	the last output be 1 if the input word is in L			
	and 0 it is not in L. 6			
8.	(a) Every circuit has an even number of edges in			
	common with every cut-set. 3			
	(b) State and prove Euler theorem. 3			
SECTION—C				
9.	Answer the following : 8×2=16			
	(i) Is the Cartesian product of two lattices always			
	a lattice ? Prove your claim.			

 $\mathbf{5}$

- How many integers between 0 and 99999 (ii) inclusive have among their digits each of 2, 5, 8?
- A bag contains 100 apples, 100 bananas, (iii) 100 oranges and 100 pears. If I pick one piece of fruit out of the bag every minute, how long will it be before I am assured of having picked at least a dozen pieces of fruit of the same kind?
- A tree has 2n vertices of degree 1, 3n vertices (iv)of degree 2 and n vertices of degree 3. Determine the number of vertices and edges in the tree.
- Construct a grammar for the language (\mathbf{v}) $L = \{aaaa, aabb, bbaa, bbbb\}.$

13722/NH/1/W/6,910

[P. T. O.

13722/NH/1/W/6,910

6

- (vi) Show that a linear planar graph with less than 30 edges has a vertex of degree 4 or less.
- (vii) Draw a complete bipartite graph on two and four vertices.
- (viii) Show that a regular binary tree has an odd number of vertices.