Roll No.

Total Pages : 4

13721/NH

C/2111

ALGEBRA

Paper-I

Semester-V

Time Allowed : 3 Hours] [Maximum Marks : 40

Note : The candidates are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of 8 short answer type questions carrying 2 marks each.

SECTION-A

1. (a) If H and K are two subgroups of a group $G, \,$

13721/NH/576/W/6,910

[P. T. O.

then show that HK is a subgroup of G iff HF = KH.

- (b) Let G be a finite group and let a ∈ G be an element of order n. Then show that a^m = e if and only if n is a divisor of m.
- (a) A subgroup H of group G is a normal subgroup of G iff the product of two right cosets of H in G is again a right coset of H in G.
 - (b) Prove that any infinite group cyclic group is isomorphic to the additive group of integers.
 - 6
- Prove that any finite semi-group is a group iff both the cancellation laws hold.
- 4. (a) State and prove first theorem on group homomorphism.
 - (b) Prove that there are only two groups of order.

6

13721/NH/576/W/**6,910** 2

SECTION-B

- 5. Prove that the characteristic of an integral domain is either prime or zero. In particular, a characteristic of a filed of either prime or zero.
- 6. If I and J be any two ideals of a ring R, then prove that IJ is an ideal of R. Moreover $IJ \subseteq I \cap J$. 6
- Prove that a commutative ring R with identity is simple if and only if R is a field.
- 8. Prove that in an integral domain every prime element is an irreducible element. Also show that the converse may not be true.

SECTION-C

- 9. Answer the following questions : $8 \times 2=16$
 - (i) In a semi group show that cancellation law may not hold.

- (ii) State First theorem on group homomorphism.
- (iii) Give an example of a non-sbelian group in which all the subgroups are normal.
- (iv) Prove that every group of Composite order possesses proper subgroups.
- (v) Let R and S be two rings. A homomorphism $f: R \rightarrow S$ is injective if and only if *Ker* $f = \{0\}$.
- (vi) Let R be a ring such that $x^2 = xf$ or all $x \in R$. Prove that R is a commutative ring. $x + y = 0 \Rightarrow x = y$.
- (vii) Define Nilpotent.
- (viii) State second isomorphism theorem on rings.