PC 13471-NJ

E-25/2111 CALCULUS—I-(1101 T) Semester—I

Time Allowed : 3 Hours] [Maximum Marks : 70

Note :— Candidates are required to attempt *five* questions in all, selecting at least *two* questions each from Sections A and B. Section C is compulsory.

SECTION—A

1. (i) Using the definition of limits, show that $\lim_{x \to c} (x - c) \sin \frac{1}{x - c} = 0.$ (ii) Let $f(x) = \begin{cases} 1, & x \le 3 \\ ax + b, & 3 < x < 5 \\ 7, & 5 \le x \end{cases}$ find the constants a and b so that

the function f may be continuous for all x. 5+5

- 2. (i) Examine for concavity upwards, concavity downwards and points of inflexion the curve $y = x^3 6x^2 + 9x + 1$.
 - (ii) Show that the asymptotes of the curve $x^3 2y^3 + xy(2x y) + y(x y) + 1 = 0$ meet the curve in three points which lies on the line x y + 1 = 0. 5+5

3. (i) Sketch the curve
$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$$
.

(ii) Compute L(P,f) and U(P,f) for the function $f(x) = \cos x$, where

$$\mathbf{P} = \left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}\right\}.$$
 5+5

13471-NJ/E-25/410/YC-9490 1 [P.T.O.

4. (i) State and prove the Fundamental Theorem of Integral Calculus.

(ii) If
$$0 < x < 1$$
, then show that $\frac{x}{1-x} \ge \log (1-x)^{-1} \ge x$. 5+5
SECTION—B
5. (i) Integrate $\int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$.

(ii) Integrate
$$\int \frac{2x}{(x^2+1)(x^2+3)} dx.$$
 5+5

6. (i) The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

(ii) Find the length of the curve
$$y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$$
 from $x = 0$ to $x = 2$.
5+5

- 7. (i) State and prove Cauchy's second theorem on limits.
 - (ii) Prove that the sequence $\{a_n\}$, where

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$$
 is convergent. 5+5

- 8. (i) Discuss the convergence of the series $2x + \frac{3x^2}{8} + \frac{4x^3}{27} + \dots$
 - (ii) Calculate the approximate value of $\sqrt{10}$ to four decimal places by taking the first four terms of an appropriate Taylor's expansion. 5+5

SECTION-C

9. (i) Verify Rolle's theorem for the function $f(x) = (x - a)^m (x - b)^n$, for all x in [a, b], where m, n are positive integers.

13471-NJ/E-25/410/YC-9490 2

- (ii) Find the area of the region included between the parabola y = ³/₄x² and the line 3x 2y + 12 = 0.
 (iii) If f(x) = x [¹/_x], then show that lim_{x → ¹/₂}f(x) does not exist.
 (iv) Determine the set of all values where the function f(x) = ^x/_{1+|x|}
- (iv) Determine the set of all values where the function $f(x) = \frac{x}{1+|x|}$ is differentiable.
- (v) If [x] stands for integral part of x, then show that $\int_{a}^{b} [5x]dx = 2$.
- (vi) Show that $\lim_{n\to\infty} \frac{1}{n} [(m+1)(m+2)...(m+n)]^{\frac{1}{n}} = \frac{1}{e}$, where m is fixed positive integer.
- (vii) Show that the sequence $\{a_n\}$, where $a_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}$ does not converge, by showing that it is not a Cauchy sequence. Prove that $\{a_n\}$ diverges to ∞ .

(viii) Discuss the convergence or divergence of the series
$$\sum \frac{1}{n} \sin \frac{1}{n}$$
.

(ix) Show that the series $\frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \frac{1}{\log 5} + \dots$ is conditionally convergent.

(x) Expand
$$f(x) = \cos x$$
 in powers of $\left(x - \frac{\pi}{2}\right)$ by Taylor's series.
10×3=30

13471-NJ/E-25/410/YC-9490

3