Roll No. Total Pages: 5

11792/NJ

O-5/2111

GROUP THEORY

Paper-302

Semester-III

(Common for MC & B.Sc.

Hons. in Mathematics) Part-II

Time Allowed: 3 Hours] [Maximum Marks: 70

Note: The candidates are required to attempt two questions each from Sections A and B carrying 10 marks each and the entire Section C consisting of 10 short answer type questions carrying 3 marks each.

SECTION-A

- 1. (a) Let G be a group and H and K be normal subgroups of G. Then prove that $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.
 - (b) Let H be a non-empty finite subset of a groupG. If H is closed under the operation of G,then prove that H is a subgroup of G.
- 2. State and prove the Fundamental theorem of Cyclic groups.
- 3. (a) Let a and b be elements of a group. If $|a| = 10 \text{ and } |b| = 21, \text{ show that } |a| \cap |b| = \{e\}.$
 - (b) Find a noncyclic subgroup of A_8 that has order 4.
- 4. (a) Prove that the set of all 2×2 matrices with entries from \mathbb{R} and determinant 1 is a group under matrix multiplication.

(b) Prove that in a group G, $(ab)^2 = a^2b^2$ if and only if ab = ba for all $a, b \in G$.

SECTION-B

- 5. If a group G is the internal direct project of a finite number subgroups H₁, H₂, ... H_n then G is isomorphic to the external direct product of H₁, H₂, ... H_n.
- 6. Prove that for any prime p, every group of order p^2 is either isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \oplus \mathbb{Z}_p$.
- 7. (a) State and prove Fermat's Little theorem.
 - (b) State and prove Cauchy's theorem for abelian groups.
- 8. (a) Prove that if for a group G, $o(G) = p^k$, where p is prime and k is some integer, then o(Z(G)) > 1.
 - (b) Let G be a group and Z(G) be its centre. If $\frac{G}{Z(G)} \ \ \text{is cyclic, then show that G is abelian.}$

3

SECTION—C

- 9. Attempt all the following questions:
 - (i) For a group G, define an isomorphism map $\frac{G}{Z(G)} \quad \text{to} \quad Inn(G). \quad \text{Prove its}$ homomorphism property.
 - (ii) Prove that the alternative group A_5 does not have a subgroup of order 30.
 - (iii) Show that G is abelian if and only if Z(G) = G.
 - (iv) Let H be a subgroup of group G. If $x^2 \in H \ \forall \ x \in G, \ then \ prove \ that \ H \ is \ a$ normal subgroup of G.
 - (v) Define Quotient group. Prove that Quotient group of an abelian group is abelian.
 - (vi) Show that Conjugacy relation is an equivanlence relation.
 - (vii) What is the maximum order of any element in A_{10} ?

- (viii) Find all of the left cosets of $\{1,\,11\}$ in U(30).
- (ix) State the Fundamental theorem of finite abelian groups.
- (x) How many distinct abelian groups (upto isomorphism) of order 100, exists.