PC-11791/NJ

K-7/2111

ANALYSIS-I -301 Semester- III (Common for MC and B.Sc. Hons. in Mathematics)

Time : Three Hours] [Maximum Marks : 70

Note : Attempt *five* questions in all, select *two* questions each from Section A and B carrying 20 marks each and Section C is compulsory consisting of 10 short answer type questions carrying 3 marks each.

SECTION - A

I.	Show that the smallest member of a set, if it exists, it	is the
	infimum of the set.	10
II.	If $f : A \rightarrow B$ is one-to-one and B is countable then countable.	A is 10
III.	State and prove the Lindel of covering theorem.	10

IV. State and prove the Bolzano Weierstrass theorem. 10

11791-NJ/00/HHH/968

[P.T.O.

SECTION – B

- V. Show that the image of a Cauchy sequence under a uniformly continuous function is again a Cauchy sequence. 10
- VI. Let (X, d) be any metric space. Show that the function d_1 defined by

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}, \quad \forall x, y \in X$$

- in a metric on X. 10
- VII. Show that the limit of a function is unique. 10
- VIII. Let A be a connected subset of a metric space X, and let B be a subset of X such that $A \subseteq B \subseteq \overline{A}$, then show that B is also connected. 10

SECTION – C

- IX. (i) Define the supremum and infimum of a set.
 - (ii) Define the Archimedean property of real numbers.
 - (iii) Define countable and uncountable sets with examples.
 - (iv) State the Cantor intersection theorem.
 - (v) State the Heine-Borel covering theorem.

11791-NJ/00/HHH/968 2

- (vi) Show that every open sphere is an open set.
- (vii) Define a connected set with an example.
- (viii) Define the components of a metric space.
- (ix) Explain the uniform continuity of a function.
- (x) Show that a non-empty connected subset of a metric space X is a component, if it is both open and closed. $(10\times3=30)$