Roll No.

Total Pages : 6

7274/N

J-15/2110

DIFFERENTIAL GEOMETRY

Paper-MM 404/A

Semester-I

Time Allowed : 3 Hours] [Maximum Marks : 70

Note : Attempt two questions each from Sections A and B carrying 10 marks each and the entire Section C consisting of 10 short answer type questions carrying 3 marks each.

SECTION-A

- Define the six surface patches for the unit sphere S² in therms of cartesian coordinates and hence explain how they give S² the structure of a surface.
 10
- 2. (a) Define principal curvatures of a surface. State and prove Euler's theorem.

(b) For the second fundamental form :

 $Ldu^2 + 2M dudv + N dv^2$

of a surface patch $\sigma(u, v)$ of a surface S, show that if p is a point in the image of σ and v, w $\in T_p(S)$, then

< W(v), w > = Ldu(v)du(w) + M[du(v)dv(w) + du(w)dv(v)] + Ndv(v)dv(w), where W stands for the Weingarten Map. 5+5

- 3. (a) Show that the first fundamental form of a surface at a point defines an inner product on the tangent space of the surface at that point.
 - (b) Define the Gaussian curvature in terms of the principal curvatures. Show that the principal curvatures are tl e roots or t ie equation :

$$\begin{vmatrix} L-KE & M-KF \\ M-KF & N-KG \end{vmatrix} = 0$$

and the principal vectors corresponding to these curvatures are the tangent vectors $t = \xi \sigma_u + \eta \sigma_v$ such that :

$$\begin{bmatrix} \mathbf{L} - \mathbf{K}\mathbf{E} & \mathbf{M} - \mathbf{K}\mathbf{F} \\ \mathbf{M} - \mathbf{K}\mathbf{F} & \mathbf{N} - \mathbf{K}\mathbf{G} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}.$$
 5+5

2

7274/N/24/W

4. (a) Prove that :

 $\begin{bmatrix} \tilde{\mathbf{E}} & \tilde{\mathbf{F}} \\ \tilde{\mathbf{F}} & \tilde{\mathbf{G}} \end{bmatrix} = \mathbf{J}^{\mathrm{t}} \begin{bmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{F} & \mathbf{G} \end{bmatrix} \mathbf{J},$

where J is the Jacobian matrix of ϕ .

(b) Discuss the concept of tangent plane. Prove that if $\sigma(u, v)$ is a surface patch, the set of linear combinations of σ_u and σ_v is unchanged when σ is reparametrised. 5+5

SECTION-B

- 5. (a) Let $\gamma(t)$ be a unit speed curve on the helicoid $\sigma(u, v) = (u \text{ cosv}, u \text{ sinv}, v)$. Show that $\dot{u}^2 + (1+u^2)\dot{v}^2 = 1$. Also show that if γ is a geodesic on σ , then $\dot{v} = \frac{a}{1+u^2}$.
 - (b) State and prove Gauss Remarkable theorem. 5+5
- 6. (a) Show that a compact surface with Gaussian curvature > 0 everywhere and constant mean curvature is a sphere.

3

(b) State and prove the Geodesic equations.

5 + 5

7. (a) Find the surface patch of the forms :

 $du^2 + dv^2$ and $-du^2$.

- (b) State and prove the Codazzi-Mainardi equations. 5+5
- 8. (a) Let $\sigma: U \to R^3$ be a minimal surface patch and assume that $A_{\sigma}(u) < \infty$. Let $\lambda \neq 0$ and assume that the principal curvatures κ of σ satisfy $|\lambda \kappa| < 1$ everywhere, so that the parallel surface σ^{λ} of σ is a regular surface patch. Prove that $A_{\sigma\lambda}(u) \leq A_{\sigma}(u)$ and equality holds for some $\lambda \neq 0$ iff $\sigma(U)$ is an open subset of a plane.
 - (b) Prove that if a surface patch has fundamental form : $e^{\lambda} (du^2 + dv^2)$, where λ is a smooth function of u and v, then its Gaussian curvature K satisfies $\Delta \lambda + 2Ke^{\lambda} = 0$, where Δ denotes the

Laplacian operator
$$\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$$
. 5+5

7274/N/24/W

4

SECTION-C

- 9. (a) Every open subset of a smooth surface is smooth.
 - (b) Find the arc length reparametrization of the curve $\gamma(t) = (a \text{ cost, } a \text{ sint, } bt).$
 - (c) Prove that if $\tilde{\gamma}$ is reparametrization of a curve γ , then γ is a reparametrization of $\tilde{\gamma}$.
 - (d) Show that every helicoid is a minimal surface.
 - (e) Discuss the geometrical approach to the tangent vector.
 - (f) Show that the Codazzi-Mainardi equation reduce to :

$$L_{v} = \frac{1}{2}E_{v}\left(\frac{L}{E} + \frac{N}{G}\right) \text{ and } N_{v} = \frac{1}{2}G_{u}\left(\frac{L}{E} + \frac{N}{G}\right)$$

5

if the first fundamental form is Edu^2 + Gdv^2 and second fundamental form is

 $Ldu^2 + N dv^2$.

- (g) Prove that a smooth map $f: S_1 \to S_2$ is a local isometry if and only if the symmetric bilinear forms <.> and $f^* <.>$ on $T_p S_1$ are equal for all $P \varepsilon S_1$.
- (h) Discuss the effect of dilation on the second fundamental form of a surface.
- (i) Calculate the principal curvatures of a unit sphere $\sigma(u, v) = (cosu cosv, cosu sinv, sinu)$ and a helicoid $\sigma(u, v) = (v cosu, v sinu. \lambda_u)$
- (j) Prove that for a diffeomorphism $f: S_1 \rightarrow S_2$, if σ_1 is an allowable surface patch on S_1 , then $f \circ \sigma_1$ is an allowable surface patch on S_2 . $10 \times 3 = 30$