M-73/2110 Subject: Mathematics

10846/N

Title of the Paper: Topology-I (MM403/AMC-103)

Time Allowed: 3 hours

Maximum Marks: 70

Note:

 Attempt FIVE questions in all by selecting TWO questions from each of the Section A and B.

2. Section C is compulsory.

SECTION - A

- 1. (a) Prove that for any cardinal number, there exists a larger cardinal number. (5)
 - (b) Prove that for any set X, card $2^X = \text{card } \mathcal{P}(X)$. (5)
- 2. (a) Prove that a set A is open if and only if A = intA. (5)
 - (b) Prove that \mathcal{B} is a basis for a topology τ on X if and only if for each $G \in \tau$ and each $x \in G$ there is a $U \in \mathcal{B}$ such that $x \in U \subset G$.
- 3. (a) Let X be a set and $\eta: \mathcal{P}(X) \to \mathcal{P}(X)$ be a map such that
 - i. $\eta(X) = X$,
 - ii. $\eta(A) \subset A$,
 - iii. $\eta \circ \eta(A) = \eta(A)$,
 - iv. $\eta(A \cap B) = \eta(A) \cap \eta(B)$.

Then $\tau = {\eta(A) : A \in \mathcal{P}(X)}$ is a topology and $int(A) = \eta(A)$. (5)

Contd.

(b)	Let Y be a subspace of X. If $A \subset Y$ is open in Y, and Y is open in X, the	en A is
	open in X .	(5)
4. (a)	Prove that a bijective map $f: X \to Y$ is homeomorphism if and only if f	$(\overline{A}) =$
	$\overline{f(A)}$ for each $A \subset X$.	(5)
(b)	Let $f: X \to Y$ be an open map. Given any subset S of Y and any closed	set U
	containing $f^{-1}(S)$, there exists a closed set V containing S such that $f^{-1}(V)$ (5)	
	SECTION - B	
5. (a)	Let $\{Y_{\alpha} : \alpha \in \Lambda\}$ be any family of spaces and $f: X \to \prod_{\alpha} Y_{\alpha}$ be a map. The	nen f
	is continuous if and only if $p_{\beta} \circ f$ is continuous for each $\beta \in \Lambda$.	(5)
(b)	The cartesian product topology in $\prod_{\alpha} Y_{\alpha}$ is the smallest topology for which	ch all
	projections $p_{\beta}: \prod_{\alpha} Y_{\alpha} \to Y_{\beta}$ are continuous.	(5)
6. (a) 1	Each continuous real valued function on a connected space takes on all va	alues
1	between any two that it assumes.	(5)
	Prove that X is connected if and only if no continuous map $f: X \to 2$ is surjection.	tive.
7. (a) I	f X is an ordered set in which every closed interval is compact, then X has	the
le	east upper bound property.	(5)
	Let X be locally compact. Then its one-point compactification \hat{X} is metrizable	ole if
a	nd only if X is 2^0 countable.	(5)
3. (a) S	how that every metrizable space with a countable dense subset has a countable	able
b	asis.	(5)
(b) L	et $P:X\to Y$ be a closed continuous surjective map such that $p^{-1}(y)$ is comp	pact
fo	or each $y \in Y$. Show that if X is Hausdorff, then so is Y.	(5)
1084	16/N	ontol
		X.17

SECTION - C

- 9. (a) Describe the open sets if all straight lines in the plane parallel to the x-axis are used for sub-basis.
 - (b) Prove that $Fr(A) = \emptyset$ if and only if A is both open and closed set.
 - (c) If every countable subset of X is closed, is the topology necessarily discrete?
 - (d) Show that the set of rational numbers is not locally compact.
 - (e) For what spaces X is the only dense set X itself?
 - (f) Prove that the cardinal number of set of all continuous real valued functions on \mathcal{R} is c.
 - (g) Each path component of a space X is open if and only if each point of X has a path connected neighbourhood.
 - (h) Prove that $\prod A_{\alpha}$ is dense in $\prod Y_{\alpha}$ if and only if $A_{\alpha} \subset Y_{\alpha}$ is dense.
 - (i) Prove that the product of two Lindelof spaces need not be Lindelof.
 - (j) Prove that the continuous image of a compact space is compact.

10846/N

(10*3=30)