10844/N

M-73/2110

ALGEBRA-I- MM 401/ AMC 101 SEMESTER-I (SYLLABUS DECEMBER-2019)

TIME ALLOWED 3 Hrs

M.M 70

NOTE: The candidates are required to attempt two questions each from Section A & B carrying 10 marks each. Section C will be compulsory carrying 30 marks.

Section A

- 1. State and prove Jordan-Holder theorem.
- 2. Prove that every nilpotent group is solvable, but the converse is not true.
- 3. Prove that a group of order p^n has a composition series of length n.
- 4. Show that the alternating group A_n is simple if $n \ge 5$. Deduce that S_n is not solvable for $n \ge 5$.

Section B

- 5. Prove that if each non-identity element of a finite group G is of order 2 then $o(G) = 2^n, n \ge 1$ and $G \cong C_1 \times C_2 \times \ldots \times C_n$ where C_i are cyclic and $o(C_i) = 2$.
- 6. State and Prove first Sylow theorem.
- 7. Let o(G) = pq where p, q are distinct prime, p < q and p does not divide (q-1) then prove that G is cyclic. Using this, check whether groups of order 22 and 35 are cyclic or not.
- 8. If R is a non-zero ring with unity 1 and A any ideal of R such that $A \neq R$. Then, prove that there exists a maximal ideal M of R such that $A \subseteq M$.

Section C

- 9. Write in short:
 - a) Show that a group of order $p^n(p)$ is a prime) is nilpotent.
 - b) Define a composition series of a group G.
 - c) Find all the non-isomorphic abelian group of order 36.
 - d) Find a composition series for the group $G = \frac{Z}{<6>}$.
 - e) Prove that the derived group of S_n is A_n .
 - f) Write down all the elements of S_3 .
 - g) Prove that no group of order 15 is simple.
 - h) Prove that any group of order 2p must have a normal subgroup of order p, where p is prime.
 - i) Define maximal and prime ideals.
 - j) Prove that a group of prime order is cyclic.