M-64/2110

MATHEMATICS FOR CHEMISTS-104 (A)

SEMESTER-I, SYLLABUS DECEMBER-2019

(FOR STUDENTS WITHOUT MATHEMATICS IN B.Sc)

TIME ALLOWED 3 Hrs

MM 55

SECTION A

- 1. (a) Find the divergence of vector $F = (-x^2 + yz)\hat{\imath} + (4y z^2x)\hat{\jmath} + (2xz 4z)\hat{k}$.
 - (b) Find the value of λ , so that $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$, where $\vec{a} = 2\hat{\imath} - 4\hat{\jmath} + 5\hat{k}, \qquad \vec{b} = \hat{\imath} - \lambda\hat{\jmath} + \hat{k}, \qquad \vec{c} = 3\hat{\imath} + 2\hat{\jmath} - 5\hat{k}$
- **2.** Determine λ and μ so that the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ b) infinite number of solution c) a unique solution have a) No solution
- 3. Find all the eigen values and the eigen vectors of the matrix A over real R, where

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

4. Find the vector equation of the plane which is at a distance of 7 units from the origin and is norm to the vector $3\hat{\imath} + 5\hat{\jmath} - 6\hat{k}$.

SECTION B

- 5. If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, prove that $x\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2}\tan u$.
- **6.** (a) Find $\frac{dy}{dx}$, if $x^3 + y^3 = 3axy$
 - (b) If the function $f(x) = \begin{cases} 3ax + b & ; x > 1 \\ 11 & ; x = 1 \text{ is continuous at } x = 1 \text{ find the } \\ 5ax 2b & ; x < 1 \end{cases}$ values of a and b.
- 7. Solve in series the equation using:

$$\frac{d^2y}{dx^2} + xy = 0$$

8. Find a Fourier series to represent $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$.

SECTION C

- 9. Do briefly
 - a) Find the value of \vec{a} . $(\vec{b} \times \vec{c})$, where

$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \qquad \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{c} = 3\hat{i} - \hat{j} - \hat{k}$$

- b) Evaluate divergence of the function = $x^2yz \hat{i} + xy^2z \hat{j} + xyz^2 \hat{k}$.
- c) Define Symmetric and Hermitian matrices.
- d) If $A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$. Find 3A B
- e) Find inverse of the matrix $A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$.
- f) State Cayley Hamilton theorem.
- g) State the conditions for finding the maximum and minimum of functions of two variables.
- h) Write the trigonometric functions of sum and differences of angles.
- i) Evaluate: $\int x \sin x \ dx$
- j) Check whether the equation

$$(1 + 2xy\cos x^2 - 2xy)dx + (\sin x^2 - x^2)dy = 0$$

is exact or not?

k) Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$