Roll No.

Total Pages : 3

10701/NH

C-2110

ALGEBRA-I

Paper-I

Semester-V

Syllabus-(Dec-19)

- Time allowed : 3 Hours] [Maximum Marks : 40
- Note: The candidates are required to attempt two questions each from Section A and B carries 6 marks each. Section C will be compulsory carries 16 marks.

SECTION-A

- 1. Let G be abelian group, then prove that $(ab)^n = a^n b^n$, for all integers n and for all a, b = G.
- Prove that Intersection of two subgroups is a subgroup. Is union of two subgroups also a subgroup.
 Justify your answer with a suitable example.

10701/NH/698/W [P.T.O.

- 3. (i) Prove that Quotient group of a cyclic group is cyclic.
 - (i) Prove that A₄ has no subgroup of order six.
- 4. State and prove third fundamental theorem on Homomorphism.

SECTION-B

- 5. What is the characteristics of a ring? Prove that characteristic of a field is either 0 or is a prime number. Give an example of a field of characteristic 7.
- 6. Let I and J be two ideals of a ring R so that I J, then = $\frac{(R / I)}{(J / I)} = \frac{R}{J}$
- 7. What is a PID? Prove that every irreducible element in a PID is prime.
- 8. For any two ideals I and J of the ring R, I J is an ideal of R iff either I J or J I.

10701/NH/698/W 2

SECTION-C

- 9. (i) Prove that every cyclic group is abelian.
 - (ii) Prove that intersection of two normal subgroups of G is a normal subgroup of G.
 - (iii) State Lagrange's theorem. Comment whether converse of Lagrange's theorem is true for cyclic groups or not.
 - (iv) Let G be a group and H be a subgroup of G, show that any two cosets of H in G are either disjoint or identical.
 - (v) Prove that intersection of two left ideal of a ring is left ideal.
 - (vi) Prove that centre of a ring R is a subring of R.
 - (vii) Prove that any field is an integral domain.

3

(viii) Define principal ideal ring and UFD.

10701/NH/698/W