M-33/2110

10475/N

Fundamentals of Spectroscopy-331 (Semester-III) (SYLL-DEC-2019)

[Time: Two Hours]

[Maximum Marks: 55]

Note: Attempt any four questions. All questions carry equal marks.

1.	Derive an equation for Induced Quantum transition.	13.75 Marks
2.	a) Explain how the spectrum is represented in UV, visible and IR regions of the spectrum. Give schematic diagram of a grating spectrometer.	6.75 Marks
	b) The bond length of HF molecule is 0.093 nm. Calculate a) moment of inertia, b) rotational constant c) rotational energy of the 4 th and 5 th rotational levels and d) the frequency of the transition between J=4 to J=5 in s ⁻¹ and cm ⁻¹ .	7 Marks
3	 a) Define natural line width? b) For IR radiation of 5μm, what is the wave number in cm⁻¹ c) Define Oblate symmetric Top molecules d) Out of C₂D₂ and CH₄ which will be IR active. 	13.75 Marks
4.	a) What are the various parameters affecting vibrational frequency? Explain	6.75Marks
	b) Describe P, Q and R Branches of spectra. How are they obtained?	7 Marks
5.	a) Write a short note on Quantum theory of Raman Effect. What do you understand by molecular polarizability?	6.75 Marks
	b) Explain Franck-Condon Principle. Also describe Fortrat Diagram.	7 Marks
6	Discuss instrumentation and theory of NMR Spectroscopy. Give examples?	13.75 Marks
7	a) What is Karplus Equation? Discuss Dihedral Angle?	7 Marks
	b) How can you explain Proton magnetic spectrum of nitrobenzene?	6.75 Marks
8	a) Why the g-value is variable in ESR Spectroscopy. Give examples?	7 Marks
	b) What are the applications of ESR-Spectroscopy?	6.75 Marks
9	Explain Zero Field Splitting in ESR-Spectroscopy. Give examples?	13.75 Marks