BS/2110

ANALYSIS-1, Paper-II Semester-III

10377/NH

[Maximum Marks:40

Time Allowed:- Three Hours]

Note:- The Candidate are required to attempt two questions each from Sections A and B carrying 6 marks each and the entire Section C consisting of eight short answer type questions carrying 2 marks each.

Section A

١.	If $\{a_n\}$ is a sequence such that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$ and $ l < 1$ then $\lim_{n\to\infty} a_n = 0$.	(6)
11.	(a) Prove that the sequence $\{a_n\}$ where $\{a_n\} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$ is convergent.	(4)
	(b) Show that $\lim_{n \to \infty} \frac{1}{n} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) = 0.$	(2)
III.	(a) Test for convergence or divergence of the series	
and a state of the	$\frac{2}{1^2}x + \frac{3^2}{2^3}x^2 + \frac{4^3}{3^4}x^3 + \cdots, x > 0.$	(3)
	(b) Discuss the convergence of the following series	
	$1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \cdots, x > 0.$	(3)
IV.	(a) If a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then it is convergent also.	(3)
	(b) Examine the convergence or divergence of the series	
	$\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$	(3)
	Section B	
V.	(a) Complete the lower sum $L(P, f)$ of the function $f(x) = x^2$ defined on [0,1] for the particular	tition
	$P = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\} \text{ and find } \lim_{n \to \infty} L(P, f).$	(4)
	(b) Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (Sin x - Cos x) dx$.	(2)
VI.	If f is bounded and integerable in [a,b], then $ f $ is also bounded & integerable in	[a,b].
	Moreover $\left \int_{a}^{b} f dx\right \leq \int_{a}^{b} f dx.$	(6)
VII.	(a) Using Mean Value Theorem Estimate the value of $\int_0^1 \frac{Sinx}{1+x^2} dx$.	(3)
	(b) Show that the function $f:[0,1] \to R$ defined by $f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is of bound	unded
	variation on [0,1].	(3)
VIII.	A function f of bounded variation on [a,b] is continuous iff V is continuous, where variation function.	/ is a (6)
	Section C	

IX. (a) Show that $\left\{ (1+\frac{1}{n})^n \right\}$ is bounded.

(b) Give an example of divergent sequence $\{a_n\} \& \{b_n\}$ such that sequence $\{a_n + b_n\}$ is not divergent.

(c) Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

(d) Discuss the convergence or divergence of the following series $\sum_{n=2}^{\infty} \frac{1}{logn}$.

(e) State Cauchy's root test.

(f) Define absolute convergence of a series. Give example

(g) Find the lower and upper sum for the function $f(x) = \begin{cases} 0, when x \text{ is rational} \\ 1, when x \text{ is irrational} \end{cases}$ on [-1,1] by dividing it into n equal sub intervals.

(h) Prove that a function of bounded variation is bounded.

(2x8=16)