F-56/2110

10317/NJ

Statistical Inference I-234

B.Sc. CSM (Sem-III)

(Syll-Dec-2019)

Maximum Marks: 30

Time: 02:00 hours

Note: Students need to attempt any four questions in all. All questions will carry equal marks.

SECTION-A

- 1. State the terms:
 - a. Sample
 - b. Parameter
 - c. Parameter Space
 - d. Confidence interval
- 2. State and prove Fisher-Neyman Factorization theorem.
- 3. Show that $\frac{[\sum x_i(\sum x_i-1)]}{n(n-1)}$ is an unbiased estimator of θ^2 , for the sample $x_1, x_2, ..., x_n$ drawn on X which takes the values 1 or 0 with respective probabilities θ and (1θ) .
- 4. Explain all the properties of a good estimator in detail.

SESCTION-B

- 5. Write a note on method of moments in estimation. Support your answer with two examples.
- 6. Based on a sample of size n from $U(\theta, \theta + 1)$ distribution, obtain sufficient statistic and MLE for θ .
- 7. Describe simple and composite hypothesis in detail with examples. Also, state power of test.
- 8. Explain the concept of Maximum Likelihood estimators. Also, discuss its properties.

SECTION-C

- 9. Short answer type questions
 - a) Define consistent estimator and give an example of an estimator which is consistent but not unbiased?
 - b) Consider *n*Bernoullian trails with probability of success *p*. Find the MLE of *p*.
 - c) Consider a random sample of size *n* from $N(\mu, \sigma^2)$ with σ^2 known. Obtain shortest length confidence interval for μ .

$$\left(2\frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2}\right)$$