F-56/2110

10315/NJ

CSM-232/ DIFFRENTIAL EQUATIONS

(SEM 3rd)

(Syll-Dec-2019)

Note : Do any 4 Questions

- 1. Solve the differntial equation $(1-x^2) d^2y/d^2x + 2y = 0$ in power series about '0'.
- 2. Verify the Legendre polynomial $P_3(x) = (5/2) x^2 (3/2) x$ satisfies the Legendre's equation when n= 3.
- 3. (a) Solve the partial differential equation (x-a)p+(x-b)q = (z-c). (b) Show that $y = x^n J_n(x)$ is the solution of $x d^2y/d^2x + (1-2n)dy/dx + xy = 0$.
- 4. Solve the partial diiferential equation $p^2 + q^2 = \alpha^2$
- 5. If F(s) is the Laplace Transformation of f(t) for t ≥ 0 and α is any number (real or complex). Prove that the function $g(t) = \begin{cases} f(t-\alpha), t > \alpha \\ 0, t < \alpha \end{cases}$ has Laplace transform $e^{-\alpha} F(s)$.
- 6. (a) Prove that $\int_0^\infty \sin x^2 \, dx = \sqrt{(\pi/8)}$ for x> 0. (b) If L(f(t)) = F(s) for t ≥ 0 . Prove that for any positive constant α , $L(f(\alpha t)) = \frac{1}{\alpha} F(\frac{s}{\alpha})$.
- 7. Solve $(D^2+1)x = a\sinh t$, where x(0)=0 and $\dot{x}(0) = 0$
- 8. Solve $2r s 3t = 5e^{x y}$
- 9. (a) Express $x^4+4x^3-5x^2+x-3$ in the terms of Legendre's polynomial.
 - (b) Prove that $z = \frac{y}{x}$ is the solution of the partial differential equation px+qy = 0
 - (c) Evalute $L(t\cos \alpha t)$, $t \ge 0$
 - (d) Show that $\int_0^\infty e^{-3t} t \cos t = \frac{2}{25}$
 - (e) Find $L^{-1}(\frac{5s-8}{4s2+36})$
 - (f) Solve $\frac{dy}{dt} + y = 0$, $\frac{dy}{dt} + x = 2\cos t$ Given that x(0) = 1, y(0) = 0
 - (g) Solve the PDE yzp + zxq = x for the general solution .