F-56/2110

10314/NJ

CSM-231 ADVANCE CALCULUS

(SEM 3rd)

(Syll-dec-2019)

Note : Do any 4 Questions

- 1. State and prove Cauchy's Second theorem on limits.
- 2. (a) Show that series ∑_{k=1}ⁿ 1/(n + k)² converges to zero.
 (b) Prove that the Sequence {³ⁿ⁺¹/_{4n+5}} is bounded
- 3. Discuss the convergence or divergence of series Σa_n where $a_n = e^{\sqrt{n}} \cdot r^{n}$.
- 4. If Σa_n is the positive terms convergent series , then show that Σa_n^2 is convergent . Is

the converse true? Justify your answer.

- 5. State and prove Dirichlet's test on series.
- 6.Discuss the convergence or divergence of the series $\Sigma 1/n^p$ where p >0.
- 7. If $f(x) = x^3-2x+5$.Find the value of f(2.001) with the help of Taylor's Theorem .Find

the an Approximate value of f(x) when x changes from 2 to 2.001

- 8. Verify the Rolle's Theorem for the function $f(x) = \cos 2(x \frac{\pi}{4})$ in the interval $[0, \frac{\pi}{4}]$.
- 9. (a) Show that the function $f(x) = x^2+3x+2$ is uniform continous in the closed interval

[1,2]

- (b) If a sequence is convergent ,Then prove that it converges to a unique limit.
- (c) Prove that $\log_{n\to\infty} \{An\} = 27$ where An $=\frac{3!}{(n!)3}$.

(d) Verify Lagrange's Mean Value theorem for the function $f(x)=2x^2-10x+29$ in the

interval [2,7]

- (e) Show that the equation $x^{41}+x+1 = 0$ has a real root.
- (f) Prove that a convergent sequence is always a Cauchy sequence.
- (g) Prove that the function $f(x) = \begin{cases} \frac{x}{|x| 2x}, x \neq 0 \\ k, x = 0 \end{cases}$ remains discontinuous at x=0

regardless of choice of k

10314/NJ