Roll No.

Total Pages: 4

10309/NH

CS/2110

PHYSICAL CHEMISTRY

Paper-C

Semester-V

Syllabus-(Dec-18)

Time allowed: 3 Hours] [Maximum Marks: 26

Note: The candidates are required to attempt two questions each from section A and B carrying 4 marks each and the entire Section C consisting of 5 short answer type questions carrying 10 marks. Attempt five questions in all.

SECTION-A

- 1. (i) Draw & discuss Black Body radiation curve. 2
 - (ii) Discuss the postulates of Quantum mechanics.

- 2. (i) Derive an expression for Planck's Radiation law.
 - (ii) Calculate the ground state energy of an electrons confined to move in a One-Dimensional box of length 2Å.
- 3. (i) Derive an expression for wave function ''.

 Energy 'E' for a particle in One-Dimensional
 box.
 - (ii) What are normalized, orthogonal & Orthonormal wave function?
- 4. Derive an expression for Schrodinger wave equation for H-like atoms in spherical polar coordinates, separate it into R, & equations. 4

SECTION-B

5. (i) Show that the spacing between the spectral lines is constant and is equal to $2\overline{B}$ for rotational spectre of a diatomic molecules? 2

- (ii) Which of the following molecule will show rotational spectre and why?HCN, CO₂, HCl, O₂, NO.
- 6. (i) How the intensity and width of spectral lines is affected is spectroscopy?
 - (ii) What are selection rules? Discuss for IR and rotational spectroscopy?
- 7. What do you understand by normal modes of vibration of polyatomic molecule? Discuss the vibrateral modes for CO₂ and H₂O molecules? 4
- 8. Discuss the following: $2 \times 2 = 4$
 - (i) Isotopic effect
 - (ii) Fundamental and overtone transitions.

SECTION-C

- 9. (i) Evaluate: $\left[\hat{x}, \frac{\hat{d}}{dx} \right]$
 - (ii) Find eigen value for the function $= \sin x$ an operator $\frac{\hat{d}^2}{dx^2}$

- (iii) Differentiate between atomic spectroscopy and Molecular spectroscopy?
- (iv) What will happen to the energy if length of one-dimensional box is increased.
- (v) What do you mean by Zero point energy?

 $5 \times 2 = 10$