PC-10054/NJ

F-42/2110

ALGEBRA GROUP AND RING THEORY – 501 Semester-V

Time : Three Hours]

[Maximum Marks : 70

Note : Attempt *two* questions each from Section A and B. Section C will be compulsory. Each question in Section A and B will be of 10 marks and section C will be of 30 marks.

SECTION - A

- I. (a) Let G be a group having a composition series and H, a normal subgroup of G. Prove that G has a composition series, one of whose terms is H.
 - (b) Let H be a normal subgroup of a group G. If both H and G/H are solvable then G is solvable.
- II. State and prove Zassenhaus Lemma.
- III. (a) Show that any finite non-zero integral domain is a field.
 - (b) Show that intersection of two subrings is a subring.

10054-NJ/00/HHH/52

[P.T.O.

- IV. (a) Show that for two ideals A and B of a ring R, $A \bigcup B$ is an ideal of R if and only if either $A \subseteq B$ of $B \subseteq A$.
 - (b) Prove that the sum of two nilpotent ideals is nilpotent however the sum of two nilpotent elements may not be nilpotent.

SECTION – B

- V. (a) Let $f : \mathbb{R} \to \mathbb{R}_1$ be a ring homomorphism then show that
 - (i) f(0) = 0 and
 - (ii) for $\forall 0 \in \mathbb{R}$, f(-a) = -f(a)
 - (b) State and prove Fundamental theorem of Homomorphism.
- VI. Show that every integral domain can be imbedded in a field.
- VII. For any two non-zero polynomials $f = (a_{0}, a_{1}, a_{2}, \dots)$, $g = (b_{0}, b_{1}, b_{2}, \dots)$ over a ring R then prove that
 - (i) if $f + g \neq 0$ then deg $(f + g) \leq \max (\deg f, \deg g)$.
 - (ii) if $fg \neq 0$ then deg $(fg) \leq \deg f + \deg g$.
 - (iii) if R is a ring without proper zero-divisor, then $\deg fg = \deg f + \deg g.$

10054-NJ/00/HHH/52 2

- VIII. (a) Show that every Euclidean Domain is a Principal Ideal Domain.
 - (b) Show that in a unique Factorization Domain every irreducible element is prime.

SECTION – C

(Compulsory Question)

- IX. (a) Define Subnormal and Normal series.
 - (b) Define Solvable group with example.
 - (c) Show that division ring is a simple ring.
 - (d) Define left ideal and right ideal of a ring R.
 - (e) Define Prime ideal and Maximal ideal.
 - (f) If *f* is a homomorphism of R into R'; them show that *f*(0) = O' where O is the zero element of R and O' is the zero element of R'.
 - (g) Define unique factorisation domain.
 - (h) If R is commutative then R[x] is commutative.
 - (i) Show that the following ring is Euclidean domain

$$\mathbf{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \, / \, a, \ b \ \in \mathbf{Z}\right\}.$$

(j) If R is a ring with identity 1 and f is a homorphism of R into a ring R' then show that f(1) is the identity of R'.

10054-NJ/00/HHH/52