10048/NJ

F-40/2110 ANALYSIS-I-301 SEMESTER-III SYLLABUS-DECEMBER- 2019

TIME ALLOWED 3 Hrs

M.M 70

2×10=20

NOTE: The candidates are required to attempt two questions each from Section A & B Section C will be compulsory

SECTION A

1. (a) Prove the every subset of a countable set is countable.

(b) If $F = \{A_1, A_2, ...\}$ is a countable collection of sets, let $G = \{B_1, B_2, ...\}$ where $B_1 = A_1$ and, for n > 1, $B_n = A_n - \bigcup_{k=1}^{n-1} A_k$. Then prove that G is a collection of disjoint sets and

$$\bigcup_{k=1}^{\infty} A_{k} = \bigcup_{k=1}^{\infty} B_{k} .$$

2. (a) If F is a countable collection of infinite disjoint sets such that each set is countable, then prove that their union is also countable.

(b) Show that a set S in R^n is closed if, and only if, it contains all its adherent points.

- 3. State and Prove Bolzano-Weierstrass Theorem.
- 4. Let S be a subset of Rⁿ. Then show that the following three statements are equivalent:
 (a) S is compact.
 - (b) S is closed and bounded.
 - (c) Every infinite subset of S has an accumulation point in S.

SECTION B

5. (a) Suppose $Y \subset X$ then prove that a subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

(b) Prove that the compact subsets of metric spaces are closed.

6. (a) If (M,d) is a metric space, define $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Prove that d' is also a

metric for M.

(b) Prove that every compact subset of a metric space is complete.

- 7. Show that a contraction f of a complete metric space has a unique fixed point.
- Prove that in a metric space (S,d) a sequence {x_n} converges to p if, and only if, every subsequence {x_{k(n)}} converges to p.

SECTION C

- 9. Explain the following in short:
 - a) Define compact and connected sets.
 - b) Determine whether $d(x, y) = \sqrt{|x y|}$ for $x, y \in R$ is a metric or not.
 - c) State Cantor intersection and Lindelof covering theorems.
 - d) Define countable and uncountable set with examples.

- e) Show that arbitrary union of closed sets in a metric space need not be closed.
- f) Determine all the accumulation points of "all the rational numbers" and decide whether the set is open or closed or neither.
- g) In a metric space (S,d), assume that $x_n \to x$, $y_n \to y$. Prove that $d(x_n, y_n) \to d(x, y)$.

-

- h) Let f be defined and continuous on a closed set S in R. Let $A = \{x : x \in S \text{ and } f(x) = 0\}$. Prove that A is closed subset of R.
- i) Give an example of a continuous $f: S \to T$ and a Cauchy sequence $\{x_n\}$ in some metric space S for which $\{f(x_n)\}$ is not a Cauchy sequence in T.
- j) Define open set, closed set and accumulative point for a metric space (M,d).

10x3 = 30