Total Pages : 5 PC-1004/MR

F-3/2050

LINEAR PROGRAMMING-364

(Semester-VI)

Time : Two Hours]

[Maximum Marks : 30

- **Note** : Attempt any *four* questions. All questions carry equal marks.
- I. Solve Using two phase method

Maximize $z = x_1 + 2x_2 + 3x_3 - x_4$ Subject to the constraints:

 $\begin{aligned} x_1 + 2x_2 + 3x_3 &= 15\\ 2x_1 + x_2 + 5x_3 &= 20\\ x_1 + 2x_2 + x_3 + x_4 &= 10\\ x_1, x_2, x_3, x_4 &\geq 0. \end{aligned}$

II. A company has two grades of inspectors 1 and 2 who are to be assigned to a quality inspection work. It is required that at least 1800 pieces are inspected per 8-hour day. Grade 1 inspectors can check pieces at the rate of 25 per hour with an accuracy of 98%. Grade 2 inspectors can check at the rate of 15 pieces per hour with an accuracy of 95%. The wage rate for grade 1 inspector is Rs. 40 per hour while that the grade 2 is Rs. 30 per hour. Each time an

[P.T.O.

error is caused by the inspector the cost to the company is Rs. 20. The company has eight grade 1 and ten grade 2 inspectors. The company wants to determine the optimal assignment of inspector to minimize total inspection cost. Formulate it as LPP and solve using graphical method.

- III. Prove that dual of dual is the primal. Also State and prove week duality theorem.
- IV. Use artificial constraint, solve the following LPP by dual simplex method. Maximize $z = 2x_3$ Subject to the constraints: $-x_1 + 2x_2 - 2x_3 \ge 8, -x_1 + x_2 + x_3 \le 4,$ $2x_1 - x_2 + 4x_3 \le 10; \quad x_1, x_2, x_3 \ge 0.$
- V. Suppose that we are given the LPP

Minimize $x_0 = 2x_1 + 3x_2 + 4x_3$ Subject to the constraints:

 $x_1 + 2x_2 + 3x_3 \le 11$, $2x_1 + 3x_2 + 2x_3 \le 10$, $x_1, x_2, x_3 \ge 0$. With its optimal table as

BV	<i>x</i> ₁	x_2	<i>x</i> ₃	S ₁	S ₂	solution
<i>x</i> ₀	0	1/2	0	1	1/2	16
<i>x</i> ₃	0	1/4	1	1/2	-1/4	3
<i>x</i> ₁	1	5/4	0	-1/2	3/4	2

Ι	à	bl	le
-	~	~ .	•••

1004-MR/910/HHH/77

- (a) Within what range the cost of x_1 varies so that the optimality remains unaffected.
- (b) Within what range the cost of x_2 varies so that the optimal solution remains unaffected.
- (c) Discuss the effect of changing the cost 2, 3, 4 of the decision variable x₁, x₂, x₃ to 1, 2, 2.
- VI. Find the starting solution in the following transportation problem by Vogel's approximation method. Also obtain the optimum solution:

	D_1	D_2	D ₃	D_4	Supply
S ₁	6	1	9	3	70
S ₂	11	5	2	8	55
S ₃	10	12	4	7	90
Demand	85	35	50	45	

VII. Consider the LPP Minimize $x_0 = 3x_1 + 2x_2 + 5x_3$ Subject to the constraints: $x_1 + 2x_2 + x_3 \le 43$, $3x_1 + 2x_3 \le 46$, $x_1 + 4x_2 \le 42$,

 $x_1, x_2, x_3 \ge 0$ With its optimal table as

Τ	a	bl	e

BV	x_1	x_2	<i>x</i> ₃	S_1	S ₂	S ₃	Solution
x_0	4	0	0	1	2	0	135
<i>x</i> ₂	-1/4	1	0	1⁄2	-1/4	0	10
x_3	3/2	0	1	0	1/2	0	23
S ₃	2	0	0	-2	1	1	2

1004-MR/910/HHH/77

Find the optimal solution when following modifications are proposed in the above LPP.

(a) $b = (43, 46, 42)^{T}$ is changed to $b' = (60, 64, 59)^{T}$.

(b)
$$b = (43, 46, 42)^{T}$$
 is changed to $b' = (45, 46, 40)^{T}$.

VIII. Solve the following assignment problem using Hungarian method. The matrix entries are processing times in hour :

		O ₁		0 ₃		O_5
	J ₁	65	40	90	80	90
	J_2	60	35	100	85	85
Job	J ₃	60	38	105	90	95
	J_4	70	45	120	80 85 90 90 87	100
	J ₅	65	40	105	87	90

Operation

- IX. Attempt all questions.
 - (a) Old hens can be bought for Rs. 2.00 each and young ones cost Rs. 5.00 each. The old hens lay 3 eggs per week and the young ones 5 eggs per week, each worth 30 paise. A hen costs Rs. 1.00 per week to feed. If I have only Rs. 80.00 to spend for hens, how many of each kind should I buy to give a profit of more than Rs. 6.00 per week, assuming that I cannot house more than 20 hens? Write a mathematical model of the problem.

(b) Use graphical method to solve the following LPP. Maximize $z = x_1 + x_2$ Subject to the constraints:

 $x_1 + x_2 \le 1$, $-3x_1 + x_2 \ge 3$ and $x_1, x_2 \ge 0$

- (c) Define Improved basic feasible solution and Optimum basic feasible solution.
- (d) Formulate dual of the following LPP.

Maximize $z = 2000x_1 + 3000x_2$

Subject to the constraints :

 $6x_1 + 9x_2 \le 100$; $2x_1 + x_2 \le 20$ and $x_1, x_2 \ge 0$

- (e) Define transportation problem.
- (f) Write down the steps of Least cost method to find the initial basic feasible solution.
- (g) What is Assignment problem?