Roll No.

Total Pages : 4

1003/MR

F-3/2050

LINER ALGEBRA

Paper-363

Semester-VI

Time Allowed : 2 Hours] [Maximum Marks : 45

- **Note :** Attempt any **four** questions. All question carry equal marks.
- Prove that the union of two subspaces is a subspace if and only if one of them is a subset of the other.
- 2. Examine whether the following set of vectors in $V_3(R)$ forms a basis or not :
 - (1,0,-1), (1, 2, 1), (0, -3,2).

- 3. Find a linear transformation $T: P_3(x) \rightarrow P_3(x)$ such that T(1+x) = 1+x, $T(2+x) = x + 3x^2$, $T(x^2) = 0$, where $P_3(x)$ is the vector space of all polynomial of degree ≤ 3 .
- 4. For the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z,) = (x + 2y, y - z, x + 2z), verify the Rank (T)+ Nullity (T)=3.
- 5. Let T:V→V be a linear operator, where V is a finite dimensional vector space over a field F. Suppose B is a basis of V(F). Prove that for any vector v∈V, [T;B][v;B]=[T(v);B].
- If the matrix of a linear operator T or R³ relative or usual basis is :
 - $\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$

then find the matrix of T relative to the basis :

 $B=\{(1, 2, 2), (1, 1, 2), (1, 2, 1)\}.$

1003/MH/477/W2

1003/MH/477/W

[P. T. O.

- 7. Let $T: V \to W$ be a linear transformation defined as $\{f(x)\} = \int_{1}^{x} f(t) dt$, where $V = \{f(x) | f(x) \text{ is a polynomial}$ over R and deg $f(x) \leq 3$ or f(x) = 0. Let $B_{1} = \{1, 1+x, 1-x+x^{2}\}$ and $B_{2} = \{1, x, x^{2}, x^{3}\}$. Find the matrix representation of T relative to basis B_{1} and B_{2} .
- 8. Find all the eigenvalues and eigenvectors of the matrix :

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- 9. Write in brief :
 - (i) Check whether the system of vectors : u = (1, 2, -3, v = (1, -3, 2) and w = (2, -1, 5) of $V_3(R)$ is linear Independent or not?
 - (ii) Prove that the polynomial $1, 1+x, 1+x^2, 1+x^3$ span the subspace W of polynomials in x of

3

degree ≤ 3 (including zero polynomials over R).

- (iii) Define singular and non-singular linear transformations.
- (iv) Let $W = \{(a, b, c, d) | b 2c + d = 0\}$ be a subspace of R⁴. Find the dimension of *W*.
- (v) Show that the map $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x+1, 2y-3, x-y) is not linear transformation.
- (vi) Define annihilator and double annihilator.
- (vii) Let V be a vector space over F. Prove that the set $\{v_1v_2\}$ is linearly dependent if and only if v_1 and v_2 collinear.