Total Pages : 2 PC-3871/MR

G-9/2050 NUMBER THEORY-601 (Semester-VI)

Time : Two Hours]

[Maximum Marks: 70

- **Note** : Attempt any *four* questions. All questions carry equal marks.
- I. If A_n is the *n*th prime number then Prove that $A_n \le 2^{2^{n-1}}$.
- II. State and Prove Fundamental theorem of arithmetic.
- III. (a) For arbitrary integers a and b, $a = b \pmod{n}$ if and only if a and b leave the same non-negative remainder when divided by n.
 - (b) By using the definition of Congruence show that 41 divides 2²⁰ 1.
- IV. (a) State and prove Mobius Inversion Formula.
 - (b) Prove that $\mu(n)$ is a multiplicative function.
- V. Define Quadratic reciprocity law. Using the Generalized Quadratic Reciprocity Law, determine whether the congruence $x^2 \equiv 231 \pmod{1105}$ is solvable.
- VI. (a) Prove that ax + by = a + c is solvable iff ax + by = c is solvable.
 - (b) Find all the solutions of 10x 7y = 17.

3871-MR/310/HHH/95

[P.T.O.

- VII. Define Pell's equation. Prove that if *d* is a positive integer not a perfect square, then $h_n^2 - dk_n^2 = (-1)^{n-1}q_{n-1}$ for all the integers $n \ge -1$.
- VIII. Prove that the continued fraction expansion of the real quadratic irrational number 'a' is purly periodic iff a > 1 and -1 < a * < 0, where a^* is the conjugate of a.
- IX. (a) Show that $M(a, b) = M(a \pm b, b)$.
 - (b) Find the index of 5 relative to each of the primitive roots of 13.
 - (c) Show that 125671221 is divisible by 9.
 - (d) Find the remainder when 2(28!) is divided by 31.
 - (e) State Chinese remainder theorem.
 - (f) Find the solution of $x^2 \equiv 5 \pmod{29}$.
 - (g) Find all the quadratic residue of 13.
 - (h) Evaluate n of Gauss Lemma for (5/19).
 - (i) Find the value of Jacobi Symbol $\left(\frac{22}{105}\right)$.
 - (j) Define continued fraction and give example.